Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresioolb Structured version   Visualization version   GIF version

Theorem limcresioolb 45624
Description: The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresioolb.f (𝜑𝐹:𝐴⟶ℂ)
limcresioolb.b (𝜑𝐵 ∈ ℝ)
limcresioolb.c (𝜑𝐶 ∈ ℝ*)
limcresioolb.bltc (𝜑𝐵 < 𝐶)
limcresioolb.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresioolb.d (𝜑𝐷 ∈ ℝ*)
limcresioolb.cled (𝜑𝐶𝐷)
Assertion
Ref Expression
limcresioolb (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))

Proof of Theorem limcresioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresioolb.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresioolb.cled . . . . . 6 (𝜑𝐶𝐷)
3 iooss2 13284 . . . . . 6 ((𝐷 ∈ ℝ*𝐶𝐷) → (𝐵(,)𝐶) ⊆ (𝐵(,)𝐷))
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵(,)𝐷))
54resabs1d 5959 . . . 4 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2735 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)))
76oveq1d 7364 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = (((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) lim 𝐵))
8 limcresioolb.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6693 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)𝐷)):(𝐴 ∩ (𝐵(,)𝐷))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐷)):(𝐴 ∩ (𝐵(,)𝐷))⟶ℂ)
11 limcresioolb.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 4192 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐵(,)𝐷)))
13 inss2 4189 . . . . 5 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ (𝐵(,)𝐷)
14 ioosscn 13311 . . . . 5 (𝐵(,)𝐷) ⊆ ℂ
1513, 14sstri 3945 . . . 4 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℂ)
17 eqid 2729 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2729 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
19 limcresioolb.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2019rexrd 11165 . . . . 5 (𝜑𝐵 ∈ ℝ*)
21 limcresioolb.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresioolb.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 lbico1 13303 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐵 ∈ (𝐵[,)𝐶))
2420, 21, 22, 23syl3anc 1373 . . . 4 (𝜑𝐵 ∈ (𝐵[,)𝐶))
25 snunioo1 45493 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐵}) = (𝐵[,)𝐶))
2620, 21, 22, 25syl3anc 1373 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐵}) = (𝐵[,)𝐶))
2726fveq2d 6826 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)))
2817cnfldtop 24669 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 7382 . . . . . . . . . 10 (𝐵(,)𝐷) ∈ V
3029inex2 5257 . . . . . . . . 9 (𝐴 ∩ (𝐵(,)𝐷)) ∈ V
31 snex 5375 . . . . . . . . 9 {𝐵} ∈ V
3230, 31unex 7680 . . . . . . . 8 ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V
33 resttop 23045 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top)
3428, 32, 33mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top)
36 mnfxr 11172 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → -∞ ∈ ℝ*)
3821adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐶 ∈ ℝ*)
39 icossre 13331 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐵[,)𝐶) ⊆ ℝ)
4019, 21, 39syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐵[,)𝐶) ⊆ ℝ)
4140sselda 3935 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ)
4241mnfltd 13026 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → -∞ < 𝑥)
4320adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈ ℝ*)
44 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,)𝐶))
45 icoltub 45489 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 < 𝐶)
4643, 38, 44, 45syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 < 𝐶)
4737, 38, 41, 42, 46eliood 45479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
48 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
49 snidg 4612 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 ∈ {𝐵})
50 elun2 4134 . . . . . . . . . . . . . . . 16 (𝐵 ∈ {𝐵} → 𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5119, 49, 503syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5251adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5348, 52eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5453adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
55 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
5643adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
5738adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
5841adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
5919ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
60 icogelb 13299 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
6143, 38, 44, 60syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
6261adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
63 neqne 2933 . . . . . . . . . . . . . . . 16 𝑥 = 𝐵𝑥𝐵)
6463adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
6559, 58, 62, 64leneltd 11270 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 < 𝑥)
6646adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐶)
6756, 57, 58, 65, 66eliood 45479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐶))
6812sselda 3935 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
69 elun1 4133 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7068, 69syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7155, 67, 70syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7254, 71pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7347, 72elind 4151 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
7424adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,)𝐶))
7548, 74eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
7675adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
77 ioossico 13341 . . . . . . . . . . . 12 (𝐵(,)𝐶) ⊆ (𝐵[,)𝐶)
7820ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
7921ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
80 elinel1 4152 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ (-∞(,)𝐶))
8180elioored 45530 . . . . . . . . . . . . . 14 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ ℝ)
8281ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
831ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐷 ∈ ℝ*)
84 elinel2 4153 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
85 id 22 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐵 → ¬ 𝑥 = 𝐵)
86 velsn 4593 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
8785, 86sylnibr 329 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵 → ¬ 𝑥 ∈ {𝐵})
88 elunnel2 4106 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∧ ¬ 𝑥 ∈ {𝐵}) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
8984, 87, 88syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
9013, 89sselid 3933 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐷))
9190adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐷))
92 ioogtlb 45476 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝑥 ∈ (𝐵(,)𝐷)) → 𝐵 < 𝑥)
9378, 83, 91, 92syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐵 < 𝑥)
9436a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → -∞ ∈ ℝ*)
9521adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝐶 ∈ ℝ*)
9680adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 ∈ (-∞(,)𝐶))
97 iooltub 45491 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
9894, 95, 96, 97syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 < 𝐶)
9998adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐶)
10078, 79, 82, 93, 99eliood 45479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐶))
10177, 100sselid 3933 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
10276, 101pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 ∈ (𝐵[,)𝐶))
10373, 102impbida 800 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,)𝐶) ↔ 𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))))
104103eqrdv 2727 . . . . . . . 8 (𝜑 → (𝐵[,)𝐶) = ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
105 retop 24647 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
106105a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
10732a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V)
108 iooretop 24651 . . . . . . . . . 10 (-∞(,)𝐶) ∈ (topGen‘ran (,))
109108a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐶) ∈ (topGen‘ran (,)))
110 elrestr 17332 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V ∧ (-∞(,)𝐶) ∈ (topGen‘ran (,))) → ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
111106, 107, 109, 110syl3anc 1373 . . . . . . . 8 (𝜑 → ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
112104, 111eqeltrd 2828 . . . . . . 7 (𝜑 → (𝐵[,)𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
113 tgioo4 24691 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
114113oveq1i 7359 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
11528a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
116 ioossre 13310 . . . . . . . . . . . 12 (𝐵(,)𝐷) ⊆ ℝ
11713, 116sstri 3945 . . . . . . . . . . 11 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℝ
118117a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℝ)
11919snssd 4760 . . . . . . . . . 10 (𝜑 → {𝐵} ⊆ ℝ)
120118, 119unssd 4143 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ⊆ ℝ)
121 reex 11100 . . . . . . . . . 10 ℝ ∈ V
122121a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
123 restabs 23050 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
124115, 120, 122, 123syl3anc 1373 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
125114, 124eqtrid 2776 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
126112, 125eleqtrd 2830 . . . . . 6 (𝜑 → (𝐵[,)𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
127 isopn3i 22967 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top ∧ (𝐵[,)𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)) = (𝐵[,)𝐶))
12835, 126, 127syl2anc 584 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)) = (𝐵[,)𝐶))
12927, 128eqtr2d 2765 . . . 4 (𝜑 → (𝐵[,)𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})))
13024, 129eleqtrd 2830 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})))
13110, 12, 16, 17, 18, 130limcres 25785 . 2 (𝜑 → (((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))
1327, 131eqtrd 2764 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cun 3901  cin 3902  wss 3903  {csn 4577   class class class wbr 5092  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  [,)cico 13250  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  Topctop 22778  intcnt 22902   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-cnp 23113  df-xms 24206  df-ms 24207  df-limc 25765
This theorem is referenced by:  fouriersw  46212
  Copyright terms: Public domain W3C validator