![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunnel1 | Structured version Visualization version GIF version |
Description: A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elunnel1 | ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
3 | 2 | orcanai 1003 | 1 ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∈ wcel 2108 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: fsumsplitsn 15792 fprodsplitsn 16037 founiiun0 45097 infxrpnf 45361 cnrefiisplem 45750 dvnprodlem1 45867 fourierdlem70 46097 fourierdlem71 46098 fourierdlem80 46107 sge0splitmpt 46332 sge0iunmptlemfi 46334 nnfoctbdjlem 46376 hoidmvlelem2 46517 hoidmvlelem3 46518 pimrecltpos 46629 |
Copyright terms: Public domain | W3C validator |