MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunnel1 Structured version   Visualization version   GIF version

Theorem elunnel1 4080
Description: A member of a union that is not member of the first class, is member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elunnel1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐵) → 𝐴𝐶)

Proof of Theorem elunnel1
StepHypRef Expression
1 elun 4079 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21biimpi 215 . 2 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
32orcanai 999 1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  wcel 2108  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888
This theorem is referenced by:  fsumsplitsn  15384  fprodsplitsn  15627  founiiun0  42617  infxrpnf  42876  cnrefiisplem  43260  dvnprodlem1  43377  fourierdlem70  43607  fourierdlem71  43608  fourierdlem80  43617  sge0splitmpt  43839  sge0iunmptlemfi  43841  nnfoctbdjlem  43883  hoidmvlelem2  44024  hoidmvlelem3  44025  pimrecltpos  44133
  Copyright terms: Public domain W3C validator