MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunnel1 Structured version   Visualization version   GIF version

Theorem elunnel1 4117
Description: A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elunnel1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐵) → 𝐴𝐶)

Proof of Theorem elunnel1
StepHypRef Expression
1 elun 4116 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21biimpi 216 . 2 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
32orcanai 1004 1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2109  cun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919
This theorem is referenced by:  fsumsplitsn  15710  fprodsplitsn  15955  founiiun0  45184  infxrpnf  45442  cnrefiisplem  45827  dvnprodlem1  45944  fourierdlem70  46174  fourierdlem71  46175  fourierdlem80  46184  sge0splitmpt  46409  sge0iunmptlemfi  46411  nnfoctbdjlem  46453  hoidmvlelem2  46594  hoidmvlelem3  46595  pimrecltpos  46706
  Copyright terms: Public domain W3C validator