![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunnel1 | Structured version Visualization version GIF version |
Description: A member of a union that is not member of the first class, is member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elunnel1 | ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3975 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpi 208 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
3 | 2 | orcanai 988 | 1 ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 836 ∈ wcel 2106 ∪ cun 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 df-un 3796 |
This theorem is referenced by: fsumsplitsn 14881 fprodsplitsn 15122 founiiun0 40293 infxrpnf 40573 cnrefiisplem 40962 dvnprodlem1 41082 fourierdlem70 41313 fourierdlem71 41314 fourierdlem80 41323 sge0splitmpt 41545 sge0iunmptlemfi 41547 nnfoctbdjlem 41589 hoidmvlelem2 41730 hoidmvlelem3 41731 pimrecltpos 41839 |
Copyright terms: Public domain | W3C validator |