![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunnel1 | Structured version Visualization version GIF version |
Description: A member of a union that is not a member of the first class, is a member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elunnel1 | ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4162 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
3 | 2 | orcanai 1004 | 1 ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2105 ∪ cun 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 |
This theorem is referenced by: fsumsplitsn 15776 fprodsplitsn 16021 founiiun0 45132 infxrpnf 45395 cnrefiisplem 45784 dvnprodlem1 45901 fourierdlem70 46131 fourierdlem71 46132 fourierdlem80 46141 sge0splitmpt 46366 sge0iunmptlemfi 46368 nnfoctbdjlem 46410 hoidmvlelem2 46551 hoidmvlelem3 46552 pimrecltpos 46663 |
Copyright terms: Public domain | W3C validator |