Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoidmvle2 Structured version   Visualization version   GIF version

Theorem hsphoidmvle2 42887
Description: The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoidmvle2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hsphoidmvle2.x (𝜑𝑋 ∈ Fin)
hsphoidmvle2.z (𝜑𝑍 ∈ (𝑋𝑌))
hsphoidmvle2.y 𝑋 = (𝑌 ∪ {𝑍})
hsphoidmvle2.c (𝜑𝐶 ∈ ℝ)
hsphoidmvle2.d (𝜑𝐷 ∈ ℝ)
hsphoidmvle2.e (𝜑𝐶𝐷)
hsphoidmvle2.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
hsphoidmvle2.a (𝜑𝐴:𝑋⟶ℝ)
hsphoidmvle2.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoidmvle2 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑐,𝑗,𝑘   𝐶,𝑎,𝑏,𝑘,𝑥   𝐶,𝑐,𝑗,𝑥   𝐷,𝑎,𝑏,𝑘,𝑥   𝐷,𝑐,𝑗   𝐻,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑐)   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem hsphoidmvle2
StepHypRef Expression
1 hsphoidmvle2.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
2 hsphoidmvle2.z . . . . . 6 (𝜑𝑍 ∈ (𝑋𝑌))
32eldifad 3948 . . . . 5 (𝜑𝑍𝑋)
41, 3ffvelrnd 6852 . . . 4 (𝜑 → (𝐴𝑍) ∈ ℝ)
5 hsphoidmvle2.b . . . . . 6 (𝜑𝐵:𝑋⟶ℝ)
65, 3ffvelrnd 6852 . . . . 5 (𝜑 → (𝐵𝑍) ∈ ℝ)
7 hsphoidmvle2.c . . . . 5 (𝜑𝐶 ∈ ℝ)
86, 7ifcld 4512 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ)
9 volicore 42883 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
104, 8, 9syl2anc 586 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
11 hsphoidmvle2.d . . . . 5 (𝜑𝐷 ∈ ℝ)
126, 11ifcld 4512 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ)
13 volicore 42883 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) ∈ ℝ)
144, 12, 13syl2anc 586 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) ∈ ℝ)
15 hsphoidmvle2.x . . . . 5 (𝜑𝑋 ∈ Fin)
16 difssd 4109 . . . . 5 (𝜑 → (𝑋 ∖ {𝑍}) ⊆ 𝑋)
17 ssfi 8738 . . . . 5 ((𝑋 ∈ Fin ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → (𝑋 ∖ {𝑍}) ∈ Fin)
1815, 16, 17syl2anc 586 . . . 4 (𝜑 → (𝑋 ∖ {𝑍}) ∈ Fin)
19 eldifi 4103 . . . . . 6 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑋)
2019adantl 484 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑋)
211ffvelrnda 6851 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
225ffvelrnda 6851 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
23 volicore 42883 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2421, 22, 23syl2anc 586 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2520, 24syldan 593 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2618, 25fprodrecl 15307 . . 3 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
27 nfv 1915 . . . 4 𝑘𝜑
2820, 21syldan 593 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝑘) ∈ ℝ)
2920, 22syldan 593 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ)
3029rexrd 10691 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ*)
31 icombl 24165 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
3228, 30, 31syl2anc 586 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
33 volge0 42266 . . . . 5 (((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3432, 33syl 17 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3527, 18, 25, 34fprodge0 15347 . . 3 (𝜑 → 0 ≤ ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
368rexrd 10691 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*)
37 icombl 24165 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
384, 36, 37syl2anc 586 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
3912rexrd 10691 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*)
40 icombl 24165 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol)
414, 39, 40syl2anc 586 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol)
424rexrd 10691 . . . . 5 (𝜑 → (𝐴𝑍) ∈ ℝ*)
434leidd 11206 . . . . 5 (𝜑 → (𝐴𝑍) ≤ (𝐴𝑍))
446leidd 11206 . . . . . . . 8 (𝜑 → (𝐵𝑍) ≤ (𝐵𝑍))
4544adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ (𝐵𝑍))
46 iftrue 4473 . . . . . . . . 9 ((𝐵𝑍) ≤ 𝐶 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = (𝐵𝑍))
4746adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = (𝐵𝑍))
486adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ∈ ℝ)
497adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐶 ∈ ℝ)
5011adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐷 ∈ ℝ)
51 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ 𝐶)
52 hsphoidmvle2.e . . . . . . . . . . 11 (𝜑𝐶𝐷)
5352adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐶𝐷)
5448, 49, 50, 51, 53letrd 10797 . . . . . . . . 9 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ 𝐷)
5554iftrued 4475 . . . . . . . 8 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = (𝐵𝑍))
5647, 55breq12d 5079 . . . . . . 7 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ↔ (𝐵𝑍) ≤ (𝐵𝑍)))
5745, 56mpbird 259 . . . . . 6 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
58 simpl 485 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝜑)
59 simpr 487 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → ¬ (𝐵𝑍) ≤ 𝐶)
6058, 7syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 ∈ ℝ)
6158, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ∈ ℝ)
6260, 61ltnled 10787 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (𝐶 < (𝐵𝑍) ↔ ¬ (𝐵𝑍) ≤ 𝐶))
6359, 62mpbird 259 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 < (𝐵𝑍))
647adantr 483 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ∈ ℝ)
656adantr 483 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → (𝐵𝑍) ∈ ℝ)
66 simpr 487 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 < (𝐵𝑍))
6764, 65, 66ltled 10788 . . . . . . . . . . 11 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ≤ (𝐵𝑍))
6867adantr 483 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ (𝐵𝑍))
69 iftrue 4473 . . . . . . . . . . . 12 ((𝐵𝑍) ≤ 𝐷 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = (𝐵𝑍))
7069eqcomd 2827 . . . . . . . . . . 11 ((𝐵𝑍) ≤ 𝐷 → (𝐵𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7170adantl 484 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → (𝐵𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7268, 71breqtrd 5092 . . . . . . . . 9 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7352ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐶𝐷)
74 iffalse 4476 . . . . . . . . . . . 12 (¬ (𝐵𝑍) ≤ 𝐷 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = 𝐷)
7574eqcomd 2827 . . . . . . . . . . 11 (¬ (𝐵𝑍) ≤ 𝐷𝐷 = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7675adantl 484 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐷 = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7773, 76breqtrd 5092 . . . . . . . . 9 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7872, 77pm2.61dan 811 . . . . . . . 8 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7958, 63, 78syl2anc 586 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
80 iffalse 4476 . . . . . . . . 9 (¬ (𝐵𝑍) ≤ 𝐶 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = 𝐶)
8180adantl 484 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = 𝐶)
8281breq1d 5076 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ↔ 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
8379, 82mpbird 259 . . . . . 6 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
8457, 83pm2.61dan 811 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
85 icossico 12807 . . . . 5 ((((𝐴𝑍) ∈ ℝ* ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*) ∧ ((𝐴𝑍) ≤ (𝐴𝑍) ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
8642, 39, 43, 84, 85syl22anc 836 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
87 volss 24134 . . . 4 ((((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
8838, 41, 86, 87syl3anc 1367 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
8910, 14, 26, 35, 88lemul1ad 11579 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
90 hsphoidmvle2.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
913ne0d 4301 . . . . 5 (𝜑𝑋 ≠ ∅)
92 hsphoidmvle2.h . . . . . 6 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
9392, 7, 15, 5hsphoif 42878 . . . . 5 (𝜑 → ((𝐻𝐶)‘𝐵):𝑋⟶ℝ)
9490, 15, 91, 1, 93hoidmvn0val 42886 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))))
9593ffvelrnda 6851 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ)
96 volicore 42883 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
9721, 95, 96syl2anc 586 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
9897recnd 10669 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℂ)
99 fveq2 6670 . . . . . . . . 9 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
100 fveq2 6670 . . . . . . . . 9 (𝑘 = 𝑍 → (((𝐻𝐶)‘𝐵)‘𝑘) = (((𝐻𝐶)‘𝐵)‘𝑍))
10199, 100oveq12d 7174 . . . . . . . 8 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)))
102101fveq2d 6674 . . . . . . 7 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
103102adantl 484 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
10492, 7, 15, 5, 3hsphoival 42881 . . . . . . . . . 10 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
1052eldifbd 3949 . . . . . . . . . . 11 (𝜑 → ¬ 𝑍𝑌)
106105iffalsed 4478 . . . . . . . . . 10 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
107104, 106eqtrd 2856 . . . . . . . . 9 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
108107oveq2d 7172 . . . . . . . 8 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
109108fveq2d 6674 . . . . . . 7 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
110109adantr 483 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
111103, 110eqtrd 2856 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
11215, 98, 3, 111fprodsplit1 41894 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))))
1137adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐶 ∈ ℝ)
11415adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑋 ∈ Fin)
1155adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐵:𝑋⟶ℝ)
11692, 113, 114, 115, 20hsphoival 42881 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)))
117 hsphoidmvle2.y . . . . . . . . . . . . 13 𝑋 = (𝑌 ∪ {𝑍})
11819, 117eleqtrdi 2923 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ (𝑌 ∪ {𝑍}))
119 eldifn 4104 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → ¬ 𝑘 ∈ {𝑍})
120 elunnel2 41316 . . . . . . . . . . . 12 ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ {𝑍}) → 𝑘𝑌)
121118, 119, 120syl2anc 586 . . . . . . . . . . 11 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑌)
122121adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑌)
123122iftrued 4475 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)) = (𝐵𝑘))
124116, 123eqtrd 2856 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = (𝐵𝑘))
125124oveq2d 7172 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
126125fveq2d 6674 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
127126prodeq2dv 15277 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
128127oveq2d 7172 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
12994, 112, 1283eqtrd 2860 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
13092, 11, 15, 5hsphoif 42878 . . . . 5 (𝜑 → ((𝐻𝐷)‘𝐵):𝑋⟶ℝ)
13190, 15, 91, 1, 130hoidmvn0val 42886 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))))
132130ffvelrnda 6851 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐷)‘𝐵)‘𝑘) ∈ ℝ)
133 volicore 42883 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐷)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℝ)
13421, 132, 133syl2anc 586 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℝ)
135134recnd 10669 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℂ)
136 fveq2 6670 . . . . . . . 8 (𝑘 = 𝑍 → (((𝐻𝐷)‘𝐵)‘𝑘) = (((𝐻𝐷)‘𝐵)‘𝑍))
13799, 136oveq12d 7174 . . . . . . 7 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍)))
138137fveq2d 6674 . . . . . 6 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))))
139138adantl 484 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))))
14015, 135, 3, 139fprodsplit1 41894 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)))))
14192, 11, 15, 5, 3hsphoival 42881 . . . . . . . 8 (𝜑 → (((𝐻𝐷)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
142105iffalsed 4478 . . . . . . . 8 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
143141, 142eqtrd 2856 . . . . . . 7 (𝜑 → (((𝐻𝐷)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
144143oveq2d 7172 . . . . . 6 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
145144fveq2d 6674 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
14611adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐷 ∈ ℝ)
14792, 146, 114, 115, 20hsphoival 42881 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐷)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐷, (𝐵𝑘), 𝐷)))
148122iftrued 4475 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐷, (𝐵𝑘), 𝐷)) = (𝐵𝑘))
149147, 148eqtrd 2856 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐷)‘𝐵)‘𝑘) = (𝐵𝑘))
150149oveq2d 7172 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
151150fveq2d 6674 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
152151prodeq2dv 15277 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
153145, 152oveq12d 7174 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
154131, 140, 1533eqtrd 2860 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
155129, 154breq12d 5079 . 2 (𝜑 → ((𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) ↔ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))))
15689, 155mpbird 259 1 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3933  cun 3934  wss 3936  c0 4291  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Fincfn 8509  cr 10536  0cc0 10537   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  [,)cico 12741  cprod 15259  volcvol 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-prod 15260  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066
This theorem is referenced by:  hoidmvlelem1  42897  hoidmvlelem2  42898
  Copyright terms: Public domain W3C validator