MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0fvelrn Structured version   Visualization version   GIF version

Theorem fvn0fvelrn 6659
Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvn0fvelrn ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)

Proof of Theorem fvn0fvelrn
StepHypRef Expression
1 fvfundmfvn0 6451 . 2 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
2 eldmressnsn 5652 . . . 4 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
3 fvelrn 6579 . . . . . . 7 ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → ((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}))
4 pm3.2 462 . . . . . . 7 (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
53, 4syl 17 . . . . . 6 ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
65ex 402 . . . . 5 (Fun (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))))
76com13 88 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))))
82, 7mpd 15 . . 3 (𝑋 ∈ dom 𝐹 → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
98imp 396 . 2 ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))
10 fvressn 6658 . . . . 5 (𝑋 ∈ dom 𝐹 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹𝑋))
1110eleq1d 2864 . . . 4 (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋})))
12 fvrnressn 6657 . . . 4 (𝑋 ∈ dom 𝐹 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
1311, 12sylbid 232 . . 3 (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
1413impcom 397 . 2 ((((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) ∈ ran 𝐹)
151, 9, 143syl 18 1 ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  wne 2972  c0 4116  {csn 4369  dom cdm 5313  ran crn 5314  cres 5315  Fun wfun 6096  cfv 6102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-fv 6110
This theorem is referenced by:  wlkvtxiedg  26873
  Copyright terms: Public domain W3C validator