| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvn0fvelrn | Structured version Visualization version GIF version | ||
| Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvn0fvelrn | ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6891 | . 2 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
| 2 | nelsn 4633 | . 2 ⊢ ((𝐹‘𝑋) ≠ ∅ → ¬ (𝐹‘𝑋) ∈ {∅}) | |
| 3 | elunnel2 4121 | . 2 ⊢ (((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) ∧ ¬ (𝐹‘𝑋) ∈ {∅}) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2926 ∪ cun 3915 ∅c0 4299 {csn 4592 ran crn 5642 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: elfvunirn 6893 wlkvtxiedg 29560 |
| Copyright terms: Public domain | W3C validator |