MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0fvelrn Structured version   Visualization version   GIF version

Theorem fvn0fvelrn 6892
Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by SN, 13-Jan-2025.)
Assertion
Ref Expression
fvn0fvelrn ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)

Proof of Theorem fvn0fvelrn
StepHypRef Expression
1 fvrn0 6891 . 2 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
2 nelsn 4633 . 2 ((𝐹𝑋) ≠ ∅ → ¬ (𝐹𝑋) ∈ {∅})
3 elunnel2 4121 . 2 (((𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}) ∧ ¬ (𝐹𝑋) ∈ {∅}) → (𝐹𝑋) ∈ ran 𝐹)
41, 2, 3sylancr 587 1 ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wne 2926  cun 3915  c0 4299  {csn 4592  ran crn 5642  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-iota 6467  df-fv 6522
This theorem is referenced by:  elfvunirn  6893  wlkvtxiedg  29560
  Copyright terms: Public domain W3C validator