| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvn0fvelrn | Structured version Visualization version GIF version | ||
| Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvn0fvelrn | ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6845 | . 2 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
| 2 | nelsn 4617 | . 2 ⊢ ((𝐹‘𝑋) ≠ ∅ → ¬ (𝐹‘𝑋) ∈ {∅}) | |
| 3 | elunnel2 4103 | . 2 ⊢ (((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) ∧ ¬ (𝐹‘𝑋) ∈ {∅}) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ≠ wne 2926 ∪ cun 3898 ∅c0 4281 {csn 4574 ran crn 5615 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6433 df-fv 6485 |
| This theorem is referenced by: elfvunirn 6847 wlkvtxiedg 29596 |
| Copyright terms: Public domain | W3C validator |