| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvn0fvelrn | Structured version Visualization version GIF version | ||
| Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvn0fvelrn | ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6859 | . 2 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
| 2 | nelsn 4620 | . 2 ⊢ ((𝐹‘𝑋) ≠ ∅ → ¬ (𝐹‘𝑋) ∈ {∅}) | |
| 3 | elunnel2 4106 | . 2 ⊢ (((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) ∧ ¬ (𝐹‘𝑋) ∈ {∅}) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ≠ wne 2930 ∪ cun 3897 ∅c0 4284 {csn 4577 ran crn 5622 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: elfvunirn 6861 wlkvtxiedg 29614 |
| Copyright terms: Public domain | W3C validator |