Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoidmvle Structured version   Visualization version   GIF version

Theorem hsphoidmvle 41320
Description: The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoidmvle.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hsphoidmvle.x (𝜑𝑋 ∈ Fin)
hsphoidmvle.z (𝜑𝑍 ∈ (𝑋𝑌))
hsphoidmvle.y 𝑋 = (𝑌 ∪ {𝑍})
hsphoidmvle.c (𝜑𝐶 ∈ ℝ)
hsphoidmvle.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
hsphoidmvle.a (𝜑𝐴:𝑋⟶ℝ)
hsphoidmvle.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoidmvle (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑐,𝑗,𝑘   𝐶,𝑎,𝑏,𝑘,𝑥   𝐶,𝑐,𝑗,𝑥   𝐻,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑐)   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem hsphoidmvle
StepHypRef Expression
1 hsphoidmvle.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
2 hsphoidmvle.z . . . . . 6 (𝜑𝑍 ∈ (𝑋𝑌))
32eldifad 3735 . . . . 5 (𝜑𝑍𝑋)
41, 3ffvelrnd 6503 . . . 4 (𝜑 → (𝐴𝑍) ∈ ℝ)
5 hsphoidmvle.b . . . . . 6 (𝜑𝐵:𝑋⟶ℝ)
65, 3ffvelrnd 6503 . . . . 5 (𝜑 → (𝐵𝑍) ∈ ℝ)
7 hsphoidmvle.c . . . . 5 (𝜑𝐶 ∈ ℝ)
86, 7ifcld 4270 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ)
9 volicore 41315 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
104, 8, 9syl2anc 573 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
11 volicore 41315 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
124, 6, 11syl2anc 573 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
13 hsphoidmvle.x . . . . 5 (𝜑𝑋 ∈ Fin)
14 difssd 3889 . . . . 5 (𝜑 → (𝑋 ∖ {𝑍}) ⊆ 𝑋)
15 ssfi 8336 . . . . 5 ((𝑋 ∈ Fin ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → (𝑋 ∖ {𝑍}) ∈ Fin)
1613, 14, 15syl2anc 573 . . . 4 (𝜑 → (𝑋 ∖ {𝑍}) ∈ Fin)
17 eldifi 3883 . . . . . 6 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑋)
1817adantl 467 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑋)
191ffvelrnda 6502 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
205ffvelrnda 6502 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
21 volicore 41315 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2219, 20, 21syl2anc 573 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2318, 22syldan 579 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2416, 23fprodrecl 14890 . . 3 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
25 nfv 1995 . . . 4 𝑘𝜑
2618, 19syldan 579 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝑘) ∈ ℝ)
2718, 20syldan 579 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ)
2827rexrd 10291 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ*)
29 icombl 23552 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
3026, 28, 29syl2anc 573 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
31 volge0 40694 . . . . 5 (((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3230, 31syl 17 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3325, 16, 23, 32fprodge0 14930 . . 3 (𝜑 → 0 ≤ ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
348rexrd 10291 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*)
35 icombl 23552 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
364, 34, 35syl2anc 573 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
376rexrd 10291 . . . . 5 (𝜑 → (𝐵𝑍) ∈ ℝ*)
38 icombl 23552 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ*) → ((𝐴𝑍)[,)(𝐵𝑍)) ∈ dom vol)
394, 37, 38syl2anc 573 . . . 4 (𝜑 → ((𝐴𝑍)[,)(𝐵𝑍)) ∈ dom vol)
404rexrd 10291 . . . . 5 (𝜑 → (𝐴𝑍) ∈ ℝ*)
414leidd 10796 . . . . 5 (𝜑 → (𝐴𝑍) ≤ (𝐴𝑍))
42 min1 12225 . . . . . 6 (((𝐵𝑍) ∈ ℝ ∧ 𝐶 ∈ ℝ) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ (𝐵𝑍))
436, 7, 42syl2anc 573 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ (𝐵𝑍))
44 icossico 12448 . . . . 5 ((((𝐴𝑍) ∈ ℝ* ∧ (𝐵𝑍) ∈ ℝ*) ∧ ((𝐴𝑍) ≤ (𝐴𝑍) ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ (𝐵𝑍))) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)(𝐵𝑍)))
4540, 37, 41, 43, 44syl22anc 1477 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)(𝐵𝑍)))
46 volss 23521 . . . 4 ((((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol ∧ ((𝐴𝑍)[,)(𝐵𝑍)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)(𝐵𝑍))) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
4736, 39, 45, 46syl3anc 1476 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
4810, 12, 24, 33, 47lemul1ad 11165 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
49 hsphoidmvle.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
50 ne0i 4069 . . . . . 6 (𝑍𝑋𝑋 ≠ ∅)
513, 50syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
52 hsphoidmvle.h . . . . . 6 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
5352, 7, 13, 5hsphoif 41310 . . . . 5 (𝜑 → ((𝐻𝐶)‘𝐵):𝑋⟶ℝ)
5449, 13, 51, 1, 53hoidmvn0val 41318 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))))
5553ffvelrnda 6502 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ)
56 volicore 41315 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
5719, 55, 56syl2anc 573 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
5857recnd 10270 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℂ)
59 fveq2 6332 . . . . . . . . 9 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
60 fveq2 6332 . . . . . . . . 9 (𝑘 = 𝑍 → (((𝐻𝐶)‘𝐵)‘𝑘) = (((𝐻𝐶)‘𝐵)‘𝑍))
6159, 60oveq12d 6811 . . . . . . . 8 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)))
6261fveq2d 6336 . . . . . . 7 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
6362adantl 467 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
6452, 7, 13, 5, 3hsphoival 41313 . . . . . . . . . 10 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
652eldifbd 3736 . . . . . . . . . . 11 (𝜑 → ¬ 𝑍𝑌)
6665iffalsed 4236 . . . . . . . . . 10 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
6764, 66eqtrd 2805 . . . . . . . . 9 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
6867oveq2d 6809 . . . . . . . 8 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
6968fveq2d 6336 . . . . . . 7 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
7069adantr 466 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
7163, 70eqtrd 2805 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
7213, 58, 3, 71fprodsplit1 40343 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))))
737adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐶 ∈ ℝ)
7413adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑋 ∈ Fin)
755adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐵:𝑋⟶ℝ)
7652, 73, 74, 75, 18hsphoival 41313 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)))
77 hsphoidmvle.y . . . . . . . . . . . . 13 𝑋 = (𝑌 ∪ {𝑍})
7817, 77syl6eleq 2860 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ (𝑌 ∪ {𝑍}))
79 eldifn 3884 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → ¬ 𝑘 ∈ {𝑍})
80 elunnel2 39720 . . . . . . . . . . . 12 ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ {𝑍}) → 𝑘𝑌)
8178, 79, 80syl2anc 573 . . . . . . . . . . 11 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑌)
8281adantl 467 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑌)
8382iftrued 4233 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)) = (𝐵𝑘))
8476, 83eqtrd 2805 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = (𝐵𝑘))
8584oveq2d 6809 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
8685fveq2d 6336 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8786prodeq2dv 14860 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8887oveq2d 6809 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
8954, 72, 883eqtrd 2809 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
9049, 1, 5, 13hoidmvval 41311 . . . 4 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
9151neneqd 2948 . . . . 5 (𝜑 → ¬ 𝑋 = ∅)
9291iffalsed 4236 . . . 4 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9322recnd 10270 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
94 fveq2 6332 . . . . . . . 8 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
9559, 94oveq12d 6811 . . . . . . 7 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
9695fveq2d 6336 . . . . . 6 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
9796adantl 467 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
9813, 93, 3, 97fprodsplit1 40343 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
9990, 92, 983eqtrd 2809 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
10089, 99breq12d 4799 . 2 (𝜑 → ((𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)𝐵) ↔ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))))
10148, 100mpbird 247 1 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cdif 3720  cun 3721  wss 3723  c0 4063  ifcif 4225  {csn 4316   class class class wbr 4786  cmpt 4863  dom cdm 5249  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  𝑚 cmap 8009  Fincfn 8109  cr 10137  0cc0 10138   · cmul 10143  *cxr 10275  cle 10277  [,)cico 12382  cprod 14842  volcvol 23451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-prod 14843  df-rest 16291  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cmp 21411  df-ovol 23452  df-vol 23453
This theorem is referenced by:  sge0hsphoire  41323  hoidmvlelem1  41329  hoidmvlelem4  41332  hspmbllem2  41361
  Copyright terms: Public domain W3C validator