Proof of Theorem hsphoidmvle
Step | Hyp | Ref
| Expression |
1 | | hsphoidmvle.a |
. . . . 5
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
2 | | hsphoidmvle.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
3 | 2 | eldifad 3871 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
4 | 1, 3 | ffvelrnd 6844 |
. . . 4
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
5 | | hsphoidmvle.b |
. . . . . 6
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
6 | 5, 3 | ffvelrnd 6844 |
. . . . 5
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
7 | | hsphoidmvle.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℝ) |
8 | 6, 7 | ifcld 4467 |
. . . 4
⊢ (𝜑 → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈ ℝ) |
9 | | volicore 43587 |
. . . 4
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ∈ ℝ) |
10 | 4, 8, 9 | syl2anc 588 |
. . 3
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ∈ ℝ) |
11 | | volicore 43587 |
. . . 4
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
12 | 4, 6, 11 | syl2anc 588 |
. . 3
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
13 | | hsphoidmvle.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
14 | | difssd 4039 |
. . . . 5
⊢ (𝜑 → (𝑋 ∖ {𝑍}) ⊆ 𝑋) |
15 | | ssfi 8743 |
. . . . 5
⊢ ((𝑋 ∈ Fin ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → (𝑋 ∖ {𝑍}) ∈ Fin) |
16 | 13, 14, 15 | syl2anc 588 |
. . . 4
⊢ (𝜑 → (𝑋 ∖ {𝑍}) ∈ Fin) |
17 | | eldifi 4033 |
. . . . . 6
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ 𝑋) |
18 | 17 | adantl 486 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘 ∈ 𝑋) |
19 | 1 | ffvelrnda 6843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
20 | 5 | ffvelrnda 6843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
21 | | volicore 43587 |
. . . . . 6
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
22 | 19, 20, 21 | syl2anc 588 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
23 | 18, 22 | syldan 595 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
24 | 16, 23 | fprodrecl 15356 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
25 | | nfv 1916 |
. . . 4
⊢
Ⅎ𝑘𝜑 |
26 | 18, 19 | syldan 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐴‘𝑘) ∈ ℝ) |
27 | 18, 20 | syldan 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵‘𝑘) ∈ ℝ) |
28 | 27 | rexrd 10730 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵‘𝑘) ∈
ℝ*) |
29 | | icombl 24265 |
. . . . . 6
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ*) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
30 | 26, 28, 29 | syl2anc 588 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
31 | | volge0 42970 |
. . . . 5
⊢ (((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol → 0 ≤
(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
32 | 30, 31 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
33 | 25, 16, 23, 32 | fprodge0 15396 |
. . 3
⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
34 | 8 | rexrd 10730 |
. . . . 5
⊢ (𝜑 → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈
ℝ*) |
35 | | icombl 24265 |
. . . . 5
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈ ℝ*) → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ∈ dom vol) |
36 | 4, 34, 35 | syl2anc 588 |
. . . 4
⊢ (𝜑 → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ∈ dom vol) |
37 | 6 | rexrd 10730 |
. . . . 5
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
38 | | icombl 24265 |
. . . . 5
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ*) → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∈ dom vol) |
39 | 4, 37, 38 | syl2anc 588 |
. . . 4
⊢ (𝜑 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∈ dom vol) |
40 | 4 | rexrd 10730 |
. . . . 5
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
41 | 4 | leidd 11245 |
. . . . 5
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐴‘𝑍)) |
42 | | min1 12624 |
. . . . . 6
⊢ (((𝐵‘𝑍) ∈ ℝ ∧ 𝐶 ∈ ℝ) → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ≤ (𝐵‘𝑍)) |
43 | 6, 7, 42 | syl2anc 588 |
. . . . 5
⊢ (𝜑 → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ≤ (𝐵‘𝑍)) |
44 | | icossico 12850 |
. . . . 5
⊢ ((((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ*) ∧ ((𝐴‘𝑍) ≤ (𝐴‘𝑍) ∧ if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ≤ (𝐵‘𝑍))) → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ⊆ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
45 | 40, 37, 41, 43, 44 | syl22anc 838 |
. . . 4
⊢ (𝜑 → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ⊆ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
46 | | volss 24234 |
. . . 4
⊢ ((((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ∈ dom vol ∧ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∈ dom vol ∧ ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ⊆ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ≤ (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
47 | 36, 39, 45, 46 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ≤ (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
48 | 10, 12, 24, 33, 47 | lemul1ad 11618 |
. 2
⊢ (𝜑 → ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ≤ ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
49 | | hsphoidmvle.l |
. . . . 5
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
50 | 3 | ne0d 4235 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ ∅) |
51 | | hsphoidmvle.h |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
52 | 51, 7, 13, 5 | hsphoif 43582 |
. . . . 5
⊢ (𝜑 → ((𝐻‘𝐶)‘𝐵):𝑋⟶ℝ) |
53 | 49, 13, 50, 1, 52 | hoidmvn0val 43590 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)))) |
54 | 52 | ffvelrnda 6843 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (((𝐻‘𝐶)‘𝐵)‘𝑘) ∈ ℝ) |
55 | | volicore 43587 |
. . . . . . 7
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (((𝐻‘𝐶)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) ∈ ℝ) |
56 | 19, 54, 55 | syl2anc 588 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) ∈ ℝ) |
57 | 56 | recnd 10708 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) ∈ ℂ) |
58 | | fveq2 6659 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
59 | | fveq2 6659 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (((𝐻‘𝐶)‘𝐵)‘𝑘) = (((𝐻‘𝐶)‘𝐵)‘𝑍)) |
60 | 58, 59 | oveq12d 7169 |
. . . . . . . 8
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)) = ((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍))) |
61 | 60 | fveq2d 6663 |
. . . . . . 7
⊢ (𝑘 = 𝑍 → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍)))) |
62 | 61 | adantl 486 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍)))) |
63 | 51, 7, 13, 5, 3 | hsphoival 43585 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐻‘𝐶)‘𝐵)‘𝑍) = if(𝑍 ∈ 𝑌, (𝐵‘𝑍), if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) |
64 | 2 | eldifbd 3872 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
65 | 64 | iffalsed 4432 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑍 ∈ 𝑌, (𝐵‘𝑍), if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) = if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) |
66 | 63, 65 | eqtrd 2794 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐻‘𝐶)‘𝐵)‘𝑍) = if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) |
67 | 66 | oveq2d 7167 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍)) = ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) |
68 | 67 | fveq2d 6663 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)))) |
69 | 68 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)))) |
70 | 62, 69 | eqtrd 2794 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)))) |
71 | 13, 57, 3, 70 | fprodsplit1 42602 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))))) |
72 | 7 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐶 ∈ ℝ) |
73 | 13 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑋 ∈ Fin) |
74 | 5 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐵:𝑋⟶ℝ) |
75 | 51, 72, 73, 74, 18 | hsphoival 43585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻‘𝐶)‘𝐵)‘𝑘) = if(𝑘 ∈ 𝑌, (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝐶, (𝐵‘𝑘), 𝐶))) |
76 | | hsphoidmvle.y |
. . . . . . . . . . . . 13
⊢ 𝑋 = (𝑌 ∪ {𝑍}) |
77 | 17, 76 | eleqtrdi 2863 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
78 | | eldifn 4034 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → ¬ 𝑘 ∈ {𝑍}) |
79 | | elunnel2 42042 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ {𝑍}) → 𝑘 ∈ 𝑌) |
80 | 77, 78, 79 | syl2anc 588 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ 𝑌) |
81 | 80 | adantl 486 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘 ∈ 𝑌) |
82 | 81 | iftrued 4429 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘 ∈ 𝑌, (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝐶, (𝐵‘𝑘), 𝐶)) = (𝐵‘𝑘)) |
83 | 75, 82 | eqtrd 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻‘𝐶)‘𝐵)‘𝑘) = (𝐵‘𝑘)) |
84 | 83 | oveq2d 7167 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
85 | 84 | fveq2d 6663 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
86 | 85 | prodeq2dv 15326 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
87 | 86 | oveq2d 7167 |
. . . 4
⊢ (𝜑 → ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)))) = ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
88 | 53, 71, 87 | 3eqtrd 2798 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) = ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
89 | 49, 1, 5, 13 | hoidmvval 43583 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
90 | 50 | neneqd 2957 |
. . . . 5
⊢ (𝜑 → ¬ 𝑋 = ∅) |
91 | 90 | iffalsed 4432 |
. . . 4
⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
92 | 22 | recnd 10708 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
93 | | fveq2 6659 |
. . . . . . . 8
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
94 | 58, 93 | oveq12d 7169 |
. . . . . . 7
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
95 | 94 | fveq2d 6663 |
. . . . . 6
⊢ (𝑘 = 𝑍 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
96 | 95 | adantl 486 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
97 | 13, 92, 3, 96 | fprodsplit1 42602 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
98 | 89, 91, 97 | 3eqtrd 2798 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
99 | 88, 98 | breq12d 5046 |
. 2
⊢ (𝜑 → ((𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) ≤ (𝐴(𝐿‘𝑋)𝐵) ↔ ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ≤ ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))))) |
100 | 48, 99 | mpbird 260 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) ≤ (𝐴(𝐿‘𝑋)𝐵)) |