MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1uniel Structured version   Visualization version   GIF version

Theorem en1uniel 8951
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7668. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1uniel (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1uniel
StepHypRef Expression
1 en1b 8947 . . . 4 (𝑆 ≈ 1o𝑆 = { 𝑆})
2 eqsnuniex 5299 . . . 4 (𝑆 = { 𝑆} → 𝑆 ∈ V)
31, 2sylbi 217 . . 3 (𝑆 ≈ 1o 𝑆 ∈ V)
4 snidg 4613 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
53, 4syl 17 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
61biimpi 216 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
75, 6eleqtrrd 2834 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576   cuni 4859   class class class wbr 5091  1oc1o 8378  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-en 8870
This theorem is referenced by:  en2eleq  9899  en2other2  9900  pmtrf  19368  pmtrmvd  19369  pmtrfinv  19374  frgpcyg  21511
  Copyright terms: Public domain W3C validator