MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1uniel Structured version   Visualization version   GIF version

Theorem en1uniel 8772
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7566. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1uniel (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1uniel
StepHypRef Expression
1 en1b 8767 . . . 4 (𝑆 ≈ 1o𝑆 = { 𝑆})
2 eqsnuniex 5278 . . . 4 (𝑆 = { 𝑆} → 𝑆 ∈ V)
31, 2sylbi 216 . . 3 (𝑆 ≈ 1o 𝑆 ∈ V)
4 snidg 4592 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
53, 4syl 17 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
61biimpi 215 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
75, 6eleqtrrd 2842 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   cuni 4836   class class class wbr 5070  1oc1o 8260  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-en 8692
This theorem is referenced by:  en2eleq  9695  en2other2  9696  pmtrf  18978  pmtrmvd  18979  pmtrfinv  18984  frgpcyg  20693
  Copyright terms: Public domain W3C validator