MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1uniel Structured version   Visualization version   GIF version

Theorem en1uniel 9052
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7738. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1uniel (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1uniel
StepHypRef Expression
1 en1b 9048 . . . 4 (𝑆 ≈ 1o𝑆 = { 𝑆})
2 eqsnuniex 5343 . . . 4 (𝑆 = { 𝑆} → 𝑆 ∈ V)
31, 2sylbi 217 . . 3 (𝑆 ≈ 1o 𝑆 ∈ V)
4 snidg 4642 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
53, 4syl 17 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
61biimpi 216 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
75, 6eleqtrrd 2836 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3464  {csn 4608   cuni 4889   class class class wbr 5125  1oc1o 8482  cen 8965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1o 8489  df-en 8969
This theorem is referenced by:  en2eleq  10031  en2other2  10032  pmtrf  19446  pmtrmvd  19447  pmtrfinv  19452  frgpcyg  21559
  Copyright terms: Public domain W3C validator