| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en1uniel | Structured version Visualization version GIF version | ||
| Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7738. (Revised by BTernaryTau, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| en1uniel | ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1b 9048 | . . . 4 ⊢ (𝑆 ≈ 1o ↔ 𝑆 = {∪ 𝑆}) | |
| 2 | eqsnuniex 5343 | . . . 4 ⊢ (𝑆 = {∪ 𝑆} → ∪ 𝑆 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ V) |
| 4 | snidg 4642 | . . 3 ⊢ (∪ 𝑆 ∈ V → ∪ 𝑆 ∈ {∪ 𝑆}) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ {∪ 𝑆}) |
| 6 | 1 | biimpi 216 | . 2 ⊢ (𝑆 ≈ 1o → 𝑆 = {∪ 𝑆}) |
| 7 | 5, 6 | eleqtrrd 2836 | 1 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 {csn 4608 ∪ cuni 4889 class class class wbr 5125 1oc1o 8482 ≈ cen 8965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-1o 8489 df-en 8969 |
| This theorem is referenced by: en2eleq 10031 en2other2 10032 pmtrf 19446 pmtrmvd 19447 pmtrfinv 19452 frgpcyg 21559 |
| Copyright terms: Public domain | W3C validator |