MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1uniel Structured version   Visualization version   GIF version

Theorem en1uniel 9093
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7770. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1uniel (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1uniel
StepHypRef Expression
1 en1b 9088 . . . 4 (𝑆 ≈ 1o𝑆 = { 𝑆})
2 eqsnuniex 5379 . . . 4 (𝑆 = { 𝑆} → 𝑆 ∈ V)
31, 2sylbi 217 . . 3 (𝑆 ≈ 1o 𝑆 ∈ V)
4 snidg 4682 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
53, 4syl 17 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
61biimpi 216 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
75, 6eleqtrrd 2847 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931   class class class wbr 5166  1oc1o 8515  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-en 9004
This theorem is referenced by:  en2eleq  10077  en2other2  10078  pmtrf  19497  pmtrmvd  19498  pmtrfinv  19503  frgpcyg  21615
  Copyright terms: Public domain W3C validator