Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqd | Structured version Visualization version GIF version |
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sneq 4533 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
Copyright terms: Public domain | W3C validator |