![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1b | Structured version Visualization version GIF version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7770. (Revised by BTernaryTau, 24-Sep-2024.) |
Ref | Expression |
---|---|
en1b | ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 9086 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
3 | unieq 4942 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | unisnv 4951 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 | |
5 | 3, 4 | eqtrdi 2796 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
6 | 5 | sneqd 4660 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
7 | 2, 6 | eqtr4d 2783 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
8 | 7 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
9 | 1, 8 | sylbi 217 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
10 | id 22 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 = {∪ 𝐴}) | |
11 | eqsnuniex 5379 | . . . 4 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | |
12 | ensn1g 9084 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → {∪ 𝐴} ≈ 1o) |
14 | 10, 13 | eqbrtrd 5188 | . 2 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o) |
15 | 9, 14 | impbii 209 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 {csn 4648 ∪ cuni 4931 class class class wbr 5166 1oc1o 8515 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-en 9004 |
This theorem is referenced by: en1uniel 9093 en1unielOLD 9094 sylow2alem2 19660 sylow2a 19661 frgpcyg 21615 ptcmplem3 24083 cnextfvval 24094 cnextcn 24096 minveclem4a 25483 isppw 27175 xrge0tsmsbi 33042 |
Copyright terms: Public domain | W3C validator |