MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 8942
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7663. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8941 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4865 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 unisnv 4874 . . . . . . 7 {𝑥} = 𝑥
53, 4eqtrdi 2782 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
65sneqd 4583 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
72, 6eqtr4d 2769 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
87exlimiv 1931 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
91, 8sylbi 217 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
10 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
11 eqsnuniex 5294 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
12 ensn1g 8939 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1410, 13eqbrtrd 5108 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
159, 14impbii 209 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  {csn 4571   cuni 4854   class class class wbr 5086  1oc1o 8373  cen 8861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-1o 8380  df-en 8865
This theorem is referenced by:  en1uniel  8946  sylow2alem2  19525  sylow2a  19526  frgpcyg  21505  ptcmplem3  23964  cnextfvval  23975  cnextcn  23977  minveclem4a  25352  isppw  27046  xrge0tsmsbi  33035
  Copyright terms: Public domain W3C validator