MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 9039
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7729. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 9038 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4894 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 unisnv 4903 . . . . . . 7 {𝑥} = 𝑥
53, 4eqtrdi 2786 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
65sneqd 4613 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
72, 6eqtr4d 2773 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
87exlimiv 1930 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
91, 8sylbi 217 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
10 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
11 eqsnuniex 5331 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
12 ensn1g 9036 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1410, 13eqbrtrd 5141 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
159, 14impbii 209 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  {csn 4601   cuni 4883   class class class wbr 5119  1oc1o 8473  cen 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1o 8480  df-en 8960
This theorem is referenced by:  en1uniel  9043  sylow2alem2  19599  sylow2a  19600  frgpcyg  21534  ptcmplem3  23992  cnextfvval  24003  cnextcn  24005  minveclem4a  25382  isppw  27076  xrge0tsmsbi  33057
  Copyright terms: Public domain W3C validator