| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en1b | Structured version Visualization version GIF version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7729. (Revised by BTernaryTau, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| en1b | ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 9038 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
| 3 | unieq 4894 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | unisnv 4903 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 | |
| 5 | 3, 4 | eqtrdi 2786 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
| 6 | 5 | sneqd 4613 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
| 7 | 2, 6 | eqtr4d 2773 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 8 | 7 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 9 | 1, 8 | sylbi 217 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
| 10 | id 22 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 = {∪ 𝐴}) | |
| 11 | eqsnuniex 5331 | . . . 4 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | |
| 12 | ensn1g 9036 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → {∪ 𝐴} ≈ 1o) |
| 14 | 10, 13 | eqbrtrd 5141 | . 2 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o) |
| 15 | 9, 14 | impbii 209 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 {csn 4601 ∪ cuni 4883 class class class wbr 5119 1oc1o 8473 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1o 8480 df-en 8960 |
| This theorem is referenced by: en1uniel 9043 sylow2alem2 19599 sylow2a 19600 frgpcyg 21534 ptcmplem3 23992 cnextfvval 24003 cnextcn 24005 minveclem4a 25382 isppw 27076 xrge0tsmsbi 33057 |
| Copyright terms: Public domain | W3C validator |