MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 8560
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8559 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4811 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3444 . . . . . . . 8 𝑥 ∈ V
54unisn 4820 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2849 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4537 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2836 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1931 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 220 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 5297 . . . . . 6 { 𝐴} ∈ V
1311, 12eqeltrdi 2898 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
1413uniexd 7448 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
15 ensn1g 8557 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1614, 15syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1711, 16eqbrtrd 5052 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
1810, 17impbii 212 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  {csn 4525   cuni 4800   class class class wbr 5030  1oc1o 8078  cen 8489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-en 8493
This theorem is referenced by:  en1uniel  8564  sylow2alem2  18735  sylow2a  18736  frgpcyg  20265  ptcmplem3  22659  cnextfvval  22670  cnextcn  22672  minveclem4a  24034  isppw  25699  xrge0tsmsbi  30743
  Copyright terms: Public domain W3C validator