| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en1b | Structured version Visualization version GIF version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7711. (Revised by BTernaryTau, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| en1b | ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 8995 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
| 3 | unieq 4882 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | unisnv 4891 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 | |
| 5 | 3, 4 | eqtrdi 2780 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
| 6 | 5 | sneqd 4601 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
| 7 | 2, 6 | eqtr4d 2767 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 8 | 7 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 9 | 1, 8 | sylbi 217 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
| 10 | id 22 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 = {∪ 𝐴}) | |
| 11 | eqsnuniex 5316 | . . . 4 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | |
| 12 | ensn1g 8993 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → {∪ 𝐴} ≈ 1o) |
| 14 | 10, 13 | eqbrtrd 5129 | . 2 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o) |
| 15 | 9, 14 | impbii 209 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 {csn 4589 ∪ cuni 4871 class class class wbr 5107 1oc1o 8427 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1o 8434 df-en 8919 |
| This theorem is referenced by: en1uniel 9000 sylow2alem2 19548 sylow2a 19549 frgpcyg 21483 ptcmplem3 23941 cnextfvval 23952 cnextcn 23954 minveclem4a 25330 isppw 27024 xrge0tsmsbi 33003 |
| Copyright terms: Public domain | W3C validator |