MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 8957
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7675. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8956 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4872 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 unisnv 4881 . . . . . . 7 {𝑥} = 𝑥
53, 4eqtrdi 2780 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
65sneqd 4591 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
72, 6eqtr4d 2767 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
87exlimiv 1930 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
91, 8sylbi 217 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
10 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
11 eqsnuniex 5303 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
12 ensn1g 8954 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1410, 13eqbrtrd 5117 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
159, 14impbii 209 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  {csn 4579   cuni 4861   class class class wbr 5095  1oc1o 8388  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1o 8395  df-en 8880
This theorem is referenced by:  en1uniel  8961  sylow2alem2  19515  sylow2a  19516  frgpcyg  21498  ptcmplem3  23957  cnextfvval  23968  cnextcn  23970  minveclem4a  25346  isppw  27040  xrge0tsmsbi  33029
  Copyright terms: Public domain W3C validator