MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 8958
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7677. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8957 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4871 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 unisnv 4880 . . . . . . 7 {𝑥} = 𝑥
53, 4eqtrdi 2784 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
65sneqd 4589 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
72, 6eqtr4d 2771 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
87exlimiv 1931 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
91, 8sylbi 217 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
10 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
11 eqsnuniex 5303 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
12 ensn1g 8955 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1410, 13eqbrtrd 5117 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
159, 14impbii 209 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437  {csn 4577   cuni 4860   class class class wbr 5095  1oc1o 8387  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-1o 8394  df-en 8880
This theorem is referenced by:  en1uniel  8962  sylow2alem2  19538  sylow2a  19539  frgpcyg  21519  ptcmplem3  23989  cnextfvval  24000  cnextcn  24002  minveclem4a  25377  isppw  27071  xrge0tsmsbi  33084
  Copyright terms: Public domain W3C validator