MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 9088
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7770. (Revised by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 9086 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4942 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 unisnv 4951 . . . . . . 7 {𝑥} = 𝑥
53, 4eqtrdi 2796 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
65sneqd 4660 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
72, 6eqtr4d 2783 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
87exlimiv 1929 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
91, 8sylbi 217 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
10 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
11 eqsnuniex 5379 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
12 ensn1g 9084 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1410, 13eqbrtrd 5188 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
159, 14impbii 209 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931   class class class wbr 5166  1oc1o 8515  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-en 9004
This theorem is referenced by:  en1uniel  9093  en1unielOLD  9094  sylow2alem2  19660  sylow2a  19661  frgpcyg  21615  ptcmplem3  24083  cnextfvval  24094  cnextcn  24096  minveclem4a  25483  isppw  27175  xrge0tsmsbi  33042
  Copyright terms: Public domain W3C validator