Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmxidl Structured version   Visualization version   GIF version

Theorem ssmxidl 33429
Description: Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Hypothesis
Ref Expression
ssmxidl.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ssmxidl ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐼   𝑅,𝑚

Proof of Theorem ssmxidl
Dummy variables 𝑗 𝑝 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 2988 . . . . . 6 (𝑝 = 𝐼 → (𝑝𝐵𝐼𝐵))
2 sseq2 3959 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
31, 2anbi12d 632 . . . . 5 (𝑝 = 𝐼 → ((𝑝𝐵𝐼𝑝) ↔ (𝐼𝐵𝐼𝐼)))
4 simp2 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ (LIdeal‘𝑅))
5 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐵)
6 ssidd 3956 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐼)
75, 6jca 511 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (𝐼𝐵𝐼𝐼))
83, 4, 7elrabd 3647 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
98ne0d 4290 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅)
10 ssmxidl.1 . . . . . 6 𝐵 = (Base‘𝑅)
11 eqid 2730 . . . . . 6 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
12 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
13 simpl2 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
14 simpl3 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼𝐵)
15 simpr1 1195 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
16 simpr2 1196 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
17 simpr3 1197 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
1810, 11, 12, 13, 14, 15, 16, 17ssmxidllem 33428 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
1918ex 412 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
2019alrimiv 1928 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
21 fvex 6830 . . . . 5 (LIdeal‘𝑅) ∈ V
2221rabex 5275 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∈ V
2322zornn0 10391 . . 3 (({𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
249, 20, 23syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
25 neeq1 2988 . . . . . . . 8 (𝑝 = 𝑚 → (𝑝𝐵𝑚𝐵))
26 sseq2 3959 . . . . . . . 8 (𝑝 = 𝑚 → (𝐼𝑝𝐼𝑚))
2725, 26anbi12d 632 . . . . . . 7 (𝑝 = 𝑚 → ((𝑝𝐵𝐼𝑝) ↔ (𝑚𝐵𝐼𝑚)))
2827elrab 3645 . . . . . 6 (𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
2928anbi2i 623 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))))
30 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑅 ∈ Ring)
31 simplrl 776 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (LIdeal‘𝑅))
32 simplr 768 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
3332simprld 771 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚𝐵)
34 psseq2 4039 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑚𝑗𝑚𝑘))
3534notbid 318 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (¬ 𝑚𝑗 ↔ ¬ 𝑚𝑘))
36 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
37 neeq1 2988 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝐵𝑘𝐵))
38 sseq2 3959 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝐼𝑝𝐼𝑘))
3937, 38anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝𝐵𝐼𝑝) ↔ (𝑘𝐵𝐼𝑘)))
40 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ (LIdeal‘𝑅))
41 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑘 = 𝐵)
4241neqned 2933 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘𝐵)
43 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
4443simprrd 773 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑚)
45 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚𝑘)
4644, 45sstrd 3943 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑘)
4742, 46jca 511 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑘𝐵𝐼𝑘))
4839, 40, 47elrabd 3647 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
4935, 36, 48rspcdva 3576 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑚𝑘)
50 npss 4061 . . . . . . . . . . . . . . 15 𝑚𝑘 ↔ (𝑚𝑘𝑚 = 𝑘))
5150biimpi 216 . . . . . . . . . . . . . 14 𝑚𝑘 → (𝑚𝑘𝑚 = 𝑘))
5249, 45, 51sylc 65 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚 = 𝑘)
5352equcomd 2020 . . . . . . . . . . . 12 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 = 𝑚)
5453ex 412 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (¬ 𝑘 = 𝐵𝑘 = 𝑚))
5554orrd 863 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝐵𝑘 = 𝑚))
5655orcomd 871 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝑚𝑘 = 𝐵))
5756ex 412 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5857ralrimiva 3122 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5910ismxidl 33417 . . . . . . . 8 (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))))
6059biimpar 477 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))) → 𝑚 ∈ (MaxIdeal‘𝑅))
6130, 31, 33, 58, 60syl13anc 1374 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (MaxIdeal‘𝑅))
6232simprrd 773 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝐼𝑚)
6361, 62jca 511 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6429, 63sylanb 581 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6564expl 457 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚)))
6665reximdv2 3140 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚))
6724, 66mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wal 1539   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  wss 3900  wpss 3901  c0 4281   cuni 4857   Or wor 5521  cfv 6477   [] crpss 7650  Basecbs 17112  Ringcrg 20144  LIdealclidl 21136  MaxIdealcmxidl 33414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-subrg 20478  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-mxidl 33415
This theorem is referenced by:  drngmxidlr  33433  krull  33434  zarcls1  33872  zarclssn  33876
  Copyright terms: Public domain W3C validator