Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmxidl Structured version   Visualization version   GIF version

Theorem ssmxidl 33467
Description: Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Hypothesis
Ref Expression
ssmxidl.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ssmxidl ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐼   𝑅,𝑚

Proof of Theorem ssmxidl
Dummy variables 𝑗 𝑝 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 3009 . . . . . 6 (𝑝 = 𝐼 → (𝑝𝐵𝐼𝐵))
2 sseq2 4035 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
31, 2anbi12d 631 . . . . 5 (𝑝 = 𝐼 → ((𝑝𝐵𝐼𝑝) ↔ (𝐼𝐵𝐼𝐼)))
4 simp2 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ (LIdeal‘𝑅))
5 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐵)
6 ssidd 4032 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐼)
75, 6jca 511 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (𝐼𝐵𝐼𝐼))
83, 4, 7elrabd 3710 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
98ne0d 4365 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅)
10 ssmxidl.1 . . . . . 6 𝐵 = (Base‘𝑅)
11 eqid 2740 . . . . . 6 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
12 simpl1 1191 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
13 simpl2 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
14 simpl3 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼𝐵)
15 simpr1 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
16 simpr2 1195 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
17 simpr3 1196 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
1810, 11, 12, 13, 14, 15, 16, 17ssmxidllem 33466 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
1918ex 412 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
2019alrimiv 1926 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
21 fvex 6933 . . . . 5 (LIdeal‘𝑅) ∈ V
2221rabex 5357 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∈ V
2322zornn0 10577 . . 3 (({𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
249, 20, 23syl2anc 583 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
25 neeq1 3009 . . . . . . . 8 (𝑝 = 𝑚 → (𝑝𝐵𝑚𝐵))
26 sseq2 4035 . . . . . . . 8 (𝑝 = 𝑚 → (𝐼𝑝𝐼𝑚))
2725, 26anbi12d 631 . . . . . . 7 (𝑝 = 𝑚 → ((𝑝𝐵𝐼𝑝) ↔ (𝑚𝐵𝐼𝑚)))
2827elrab 3708 . . . . . 6 (𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
2928anbi2i 622 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))))
30 simpll1 1212 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑅 ∈ Ring)
31 simplrl 776 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (LIdeal‘𝑅))
32 simplr 768 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
3332simprld 771 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚𝐵)
34 psseq2 4114 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑚𝑗𝑚𝑘))
3534notbid 318 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (¬ 𝑚𝑗 ↔ ¬ 𝑚𝑘))
36 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
37 neeq1 3009 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝐵𝑘𝐵))
38 sseq2 4035 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝐼𝑝𝐼𝑘))
3937, 38anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝𝐵𝐼𝑝) ↔ (𝑘𝐵𝐼𝑘)))
40 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ (LIdeal‘𝑅))
41 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑘 = 𝐵)
4241neqned 2953 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘𝐵)
43 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
4443simprrd 773 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑚)
45 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚𝑘)
4644, 45sstrd 4019 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑘)
4742, 46jca 511 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑘𝐵𝐼𝑘))
4839, 40, 47elrabd 3710 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
4935, 36, 48rspcdva 3636 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑚𝑘)
50 npss 4136 . . . . . . . . . . . . . . 15 𝑚𝑘 ↔ (𝑚𝑘𝑚 = 𝑘))
5150biimpi 216 . . . . . . . . . . . . . 14 𝑚𝑘 → (𝑚𝑘𝑚 = 𝑘))
5249, 45, 51sylc 65 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚 = 𝑘)
5352equcomd 2018 . . . . . . . . . . . 12 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 = 𝑚)
5453ex 412 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (¬ 𝑘 = 𝐵𝑘 = 𝑚))
5554orrd 862 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝐵𝑘 = 𝑚))
5655orcomd 870 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝑚𝑘 = 𝐵))
5756ex 412 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5857ralrimiva 3152 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5910ismxidl 33455 . . . . . . . 8 (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))))
6059biimpar 477 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))) → 𝑚 ∈ (MaxIdeal‘𝑅))
6130, 31, 33, 58, 60syl13anc 1372 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (MaxIdeal‘𝑅))
6232simprrd 773 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝐼𝑚)
6361, 62jca 511 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6429, 63sylanb 580 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6564expl 457 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚)))
6665reximdv2 3170 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚))
6724, 66mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  wpss 3977  c0 4352   cuni 4931   Or wor 5606  cfv 6573   [] crpss 7757  Basecbs 17258  Ringcrg 20260  LIdealclidl 21239  MaxIdealcmxidl 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-mxidl 33453
This theorem is referenced by:  drngmxidlr  33471  krull  33472  zarcls1  33815  zarclssn  33819
  Copyright terms: Public domain W3C validator