Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmxidl Structured version   Visualization version   GIF version

Theorem ssmxidl 31642
Description: Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Hypothesis
Ref Expression
ssmxidl.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ssmxidl ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐼   𝑅,𝑚

Proof of Theorem ssmxidl
Dummy variables 𝑗 𝑝 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 3006 . . . . . 6 (𝑝 = 𝐼 → (𝑝𝐵𝐼𝐵))
2 sseq2 3947 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
31, 2anbi12d 631 . . . . 5 (𝑝 = 𝐼 → ((𝑝𝐵𝐼𝑝) ↔ (𝐼𝐵𝐼𝐼)))
4 simp2 1136 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ (LIdeal‘𝑅))
5 simp3 1137 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐵)
6 ssidd 3944 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐼)
75, 6jca 512 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (𝐼𝐵𝐼𝐼))
83, 4, 7elrabd 3626 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
98ne0d 4269 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅)
10 ssmxidl.1 . . . . . 6 𝐵 = (Base‘𝑅)
11 eqid 2738 . . . . . 6 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
12 simpl1 1190 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
13 simpl2 1191 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
14 simpl3 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼𝐵)
15 simpr1 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
16 simpr2 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
17 simpr3 1195 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
1810, 11, 12, 13, 14, 15, 16, 17ssmxidllem 31641 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
1918ex 413 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
2019alrimiv 1930 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
21 fvex 6787 . . . . 5 (LIdeal‘𝑅) ∈ V
2221rabex 5256 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∈ V
2322zornn0 10264 . . 3 (({𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
249, 20, 23syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
25 neeq1 3006 . . . . . . . 8 (𝑝 = 𝑚 → (𝑝𝐵𝑚𝐵))
26 sseq2 3947 . . . . . . . 8 (𝑝 = 𝑚 → (𝐼𝑝𝐼𝑚))
2725, 26anbi12d 631 . . . . . . 7 (𝑝 = 𝑚 → ((𝑝𝐵𝐼𝑝) ↔ (𝑚𝐵𝐼𝑚)))
2827elrab 3624 . . . . . 6 (𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
2928anbi2i 623 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))))
30 simpll1 1211 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑅 ∈ Ring)
31 simplrl 774 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (LIdeal‘𝑅))
32 simplr 766 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
3332simprld 769 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚𝐵)
34 psseq2 4023 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑚𝑗𝑚𝑘))
3534notbid 318 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (¬ 𝑚𝑗 ↔ ¬ 𝑚𝑘))
36 simp-4r 781 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
37 neeq1 3006 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝐵𝑘𝐵))
38 sseq2 3947 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝐼𝑝𝐼𝑘))
3937, 38anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝𝐵𝐼𝑝) ↔ (𝑘𝐵𝐼𝑘)))
40 simpllr 773 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ (LIdeal‘𝑅))
41 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑘 = 𝐵)
4241neqned 2950 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘𝐵)
43 simp-5r 783 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
4443simprrd 771 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑚)
45 simplr 766 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚𝑘)
4644, 45sstrd 3931 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑘)
4742, 46jca 512 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑘𝐵𝐼𝑘))
4839, 40, 47elrabd 3626 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
4935, 36, 48rspcdva 3562 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑚𝑘)
50 npss 4045 . . . . . . . . . . . . . . 15 𝑚𝑘 ↔ (𝑚𝑘𝑚 = 𝑘))
5150biimpi 215 . . . . . . . . . . . . . 14 𝑚𝑘 → (𝑚𝑘𝑚 = 𝑘))
5249, 45, 51sylc 65 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚 = 𝑘)
5352equcomd 2022 . . . . . . . . . . . 12 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 = 𝑚)
5453ex 413 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (¬ 𝑘 = 𝐵𝑘 = 𝑚))
5554orrd 860 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝐵𝑘 = 𝑚))
5655orcomd 868 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝑚𝑘 = 𝐵))
5756ex 413 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5857ralrimiva 3103 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5910ismxidl 31634 . . . . . . . 8 (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))))
6059biimpar 478 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))) → 𝑚 ∈ (MaxIdeal‘𝑅))
6130, 31, 33, 58, 60syl13anc 1371 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (MaxIdeal‘𝑅))
6232simprrd 771 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝐼𝑚)
6361, 62jca 512 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6429, 63sylanb 581 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6564expl 458 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚)))
6665reximdv2 3199 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚))
6724, 66mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  wpss 3888  c0 4256   cuni 4839   Or wor 5502  cfv 6433   [] crpss 7575  Basecbs 16912  Ringcrg 19783  LIdealclidl 20432  MaxIdealcmxidl 31631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-mxidl 31632
This theorem is referenced by:  krull  31643  zarcls1  31819  zarclssn  31823
  Copyright terms: Public domain W3C validator