| Step | Hyp | Ref
| Expression |
| 1 | | neeq1 3003 |
. . . . . 6
⊢ (𝑝 = 𝐼 → (𝑝 ≠ 𝐵 ↔ 𝐼 ≠ 𝐵)) |
| 2 | | sseq2 4010 |
. . . . . 6
⊢ (𝑝 = 𝐼 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝐼)) |
| 3 | 1, 2 | anbi12d 632 |
. . . . 5
⊢ (𝑝 = 𝐼 → ((𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝) ↔ (𝐼 ≠ 𝐵 ∧ 𝐼 ⊆ 𝐼))) |
| 4 | | simp2 1138 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 5 | | simp3 1139 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → 𝐼 ≠ 𝐵) |
| 6 | | ssidd 4007 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → 𝐼 ⊆ 𝐼) |
| 7 | 5, 6 | jca 511 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → (𝐼 ≠ 𝐵 ∧ 𝐼 ⊆ 𝐼)) |
| 8 | 3, 4, 7 | elrabd 3694 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}) |
| 9 | 8 | ne0d 4342 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ≠ ∅) |
| 10 | | ssmxidl.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 11 | | eqid 2737 |
. . . . . 6
⊢ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} |
| 12 | | simpl1 1192 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) → 𝑅 ∈ Ring) |
| 13 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 14 | | simpl3 1194 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) → 𝐼 ≠ 𝐵) |
| 15 | | simpr1 1195 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) → 𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}) |
| 16 | | simpr2 1196 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) → 𝑧 ≠ ∅) |
| 17 | | simpr3 1197 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) →
[⊊] Or 𝑧) |
| 18 | 10, 11, 12, 13, 14, 15, 16, 17 | ssmxidllem 33501 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧)) → ∪ 𝑧
∈ {𝑝 ∈
(LIdeal‘𝑅) ∣
(𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}) |
| 19 | 18 | ex 412 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧) → ∪ 𝑧
∈ {𝑝 ∈
(LIdeal‘𝑅) ∣
(𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)})) |
| 20 | 19 | alrimiv 1927 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧) → ∪ 𝑧
∈ {𝑝 ∈
(LIdeal‘𝑅) ∣
(𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)})) |
| 21 | | fvex 6919 |
. . . . 5
⊢
(LIdeal‘𝑅)
∈ V |
| 22 | 21 | rabex 5339 |
. . . 4
⊢ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∈ V |
| 23 | 22 | zornn0 10548 |
. . 3
⊢ (({𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ 𝑧 ≠ ∅ ∧ [⊊] Or
𝑧) → ∪ 𝑧
∈ {𝑝 ∈
(LIdeal‘𝑅) ∣
(𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)})) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) |
| 24 | 9, 20, 23 | syl2anc 584 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) |
| 25 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑝 = 𝑚 → (𝑝 ≠ 𝐵 ↔ 𝑚 ≠ 𝐵)) |
| 26 | | sseq2 4010 |
. . . . . . . 8
⊢ (𝑝 = 𝑚 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝑚)) |
| 27 | 25, 26 | anbi12d 632 |
. . . . . . 7
⊢ (𝑝 = 𝑚 → ((𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝) ↔ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) |
| 28 | 27 | elrab 3692 |
. . . . . 6
⊢ (𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) |
| 29 | 28 | anbi2i 623 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚)))) |
| 30 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → 𝑅 ∈ Ring) |
| 31 | | simplrl 777 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → 𝑚 ∈ (LIdeal‘𝑅)) |
| 32 | | simplr 769 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) |
| 33 | 32 | simprld 772 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → 𝑚 ≠ 𝐵) |
| 34 | | psseq2 4091 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑚 ⊊ 𝑗 ↔ 𝑚 ⊊ 𝑘)) |
| 35 | 34 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (¬ 𝑚 ⊊ 𝑗 ↔ ¬ 𝑚 ⊊ 𝑘)) |
| 36 | | simp-4r 784 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) |
| 37 | | neeq1 3003 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ≠ 𝐵 ↔ 𝑘 ≠ 𝐵)) |
| 38 | | sseq2 4010 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝑘)) |
| 39 | 37, 38 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → ((𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝) ↔ (𝑘 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑘))) |
| 40 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ (LIdeal‘𝑅)) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑘 = 𝐵) |
| 42 | 41 | neqned 2947 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ≠ 𝐵) |
| 43 | | simp-5r 786 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) |
| 44 | 43 | simprrd 774 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼 ⊆ 𝑚) |
| 45 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚 ⊆ 𝑘) |
| 46 | 44, 45 | sstrd 3994 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼 ⊆ 𝑘) |
| 47 | 42, 46 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑘 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑘)) |
| 48 | 39, 40, 47 | elrabd 3694 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}) |
| 49 | 35, 36, 48 | rspcdva 3623 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑚 ⊊ 𝑘) |
| 50 | | npss 4113 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑚 ⊊ 𝑘 ↔ (𝑚 ⊆ 𝑘 → 𝑚 = 𝑘)) |
| 51 | 50 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑚 ⊊ 𝑘 → (𝑚 ⊆ 𝑘 → 𝑚 = 𝑘)) |
| 52 | 49, 45, 51 | sylc 65 |
. . . . . . . . . . . . 13
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚 = 𝑘) |
| 53 | 52 | equcomd 2018 |
. . . . . . . . . . . 12
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 = 𝑚) |
| 54 | 53 | ex 412 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) → (¬ 𝑘 = 𝐵 → 𝑘 = 𝑚)) |
| 55 | 54 | orrd 864 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) → (𝑘 = 𝐵 ∨ 𝑘 = 𝑚)) |
| 56 | 55 | orcomd 872 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ⊆ 𝑘) → (𝑘 = 𝑚 ∨ 𝑘 = 𝐵)) |
| 57 | 56 | ex 412 |
. . . . . . . 8
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈
(LIdeal‘𝑅) ∧
𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑚 ⊆ 𝑘 → (𝑘 = 𝑚 ∨ 𝑘 = 𝐵))) |
| 58 | 57 | ralrimiva 3146 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑘 → (𝑘 = 𝑚 ∨ 𝑘 = 𝐵))) |
| 59 | 10 | ismxidl 33490 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ 𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑘 → (𝑘 = 𝑚 ∨ 𝑘 = 𝐵))))) |
| 60 | 59 | biimpar 477 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ 𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑘 → (𝑘 = 𝑚 ∨ 𝑘 = 𝐵)))) → 𝑚 ∈ (MaxIdeal‘𝑅)) |
| 61 | 30, 31, 33, 58, 60 | syl13anc 1374 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → 𝑚 ∈ (MaxIdeal‘𝑅)) |
| 62 | 32 | simprrd 774 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → 𝐼 ⊆ 𝑚) |
| 63 | 61, 62 | jca 511 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼 ⊆ 𝑚)) |
| 64 | 29, 63 | sylanb 581 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼 ⊆ 𝑚)) |
| 65 | 64 | expl 457 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ((𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼 ⊆ 𝑚))) |
| 66 | 65 | reximdv2 3164 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → (∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} ¬ 𝑚 ⊊ 𝑗 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚)) |
| 67 | 24, 66 | mpd 15 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) |