Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmxidl Structured version   Visualization version   GIF version

Theorem ssmxidl 33451
Description: Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Hypothesis
Ref Expression
ssmxidl.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ssmxidl ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐼   𝑅,𝑚

Proof of Theorem ssmxidl
Dummy variables 𝑗 𝑝 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 2988 . . . . . 6 (𝑝 = 𝐼 → (𝑝𝐵𝐼𝐵))
2 sseq2 3975 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
31, 2anbi12d 632 . . . . 5 (𝑝 = 𝐼 → ((𝑝𝐵𝐼𝑝) ↔ (𝐼𝐵𝐼𝐼)))
4 simp2 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ (LIdeal‘𝑅))
5 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐵)
6 ssidd 3972 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼𝐼)
75, 6jca 511 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (𝐼𝐵𝐼𝐼))
83, 4, 7elrabd 3663 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
98ne0d 4307 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅)
10 ssmxidl.1 . . . . . 6 𝐵 = (Base‘𝑅)
11 eqid 2730 . . . . . 6 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
12 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
13 simpl2 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
14 simpl3 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼𝐵)
15 simpr1 1195 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
16 simpr2 1196 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
17 simpr3 1197 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
1810, 11, 12, 13, 14, 15, 16, 17ssmxidllem 33450 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
1918ex 412 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
2019alrimiv 1927 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}))
21 fvex 6873 . . . . 5 (LIdeal‘𝑅) ∈ V
2221rabex 5296 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∈ V
2322zornn0 10467 . . 3 (({𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ 𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
249, 20, 23syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
25 neeq1 2988 . . . . . . . 8 (𝑝 = 𝑚 → (𝑝𝐵𝑚𝐵))
26 sseq2 3975 . . . . . . . 8 (𝑝 = 𝑚 → (𝐼𝑝𝐼𝑚))
2725, 26anbi12d 632 . . . . . . 7 (𝑝 = 𝑚 → ((𝑝𝐵𝐼𝑝) ↔ (𝑚𝐵𝐼𝑚)))
2827elrab 3661 . . . . . 6 (𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
2928anbi2i 623 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))))
30 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑅 ∈ Ring)
31 simplrl 776 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (LIdeal‘𝑅))
32 simplr 768 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
3332simprld 771 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚𝐵)
34 psseq2 4056 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑚𝑗𝑚𝑘))
3534notbid 318 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (¬ 𝑚𝑗 ↔ ¬ 𝑚𝑘))
36 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗)
37 neeq1 2988 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝐵𝑘𝐵))
38 sseq2 3975 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝐼𝑝𝐼𝑘))
3937, 38anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝𝐵𝐼𝑝) ↔ (𝑘𝐵𝐼𝑘)))
40 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ (LIdeal‘𝑅))
41 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑘 = 𝐵)
4241neqned 2933 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘𝐵)
43 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚)))
4443simprrd 773 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑚)
45 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚𝑘)
4644, 45sstrd 3959 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝐼𝑘)
4742, 46jca 511 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → (𝑘𝐵𝐼𝑘))
4839, 40, 47elrabd 3663 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
4935, 36, 48rspcdva 3592 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → ¬ 𝑚𝑘)
50 npss 4078 . . . . . . . . . . . . . . 15 𝑚𝑘 ↔ (𝑚𝑘𝑚 = 𝑘))
5150biimpi 216 . . . . . . . . . . . . . 14 𝑚𝑘 → (𝑚𝑘𝑚 = 𝑘))
5249, 45, 51sylc 65 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑚 = 𝑘)
5352equcomd 2019 . . . . . . . . . . . 12 (((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) ∧ ¬ 𝑘 = 𝐵) → 𝑘 = 𝑚)
5453ex 412 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (¬ 𝑘 = 𝐵𝑘 = 𝑚))
5554orrd 863 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝐵𝑘 = 𝑚))
5655orcomd 871 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑚𝑘) → (𝑘 = 𝑚𝑘 = 𝐵))
5756ex 412 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5857ralrimiva 3126 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))
5910ismxidl 33439 . . . . . . . 8 (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))))
6059biimpar 477 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚𝐵 ∧ ∀𝑘 ∈ (LIdeal‘𝑅)(𝑚𝑘 → (𝑘 = 𝑚𝑘 = 𝐵)))) → 𝑚 ∈ (MaxIdeal‘𝑅))
6130, 31, 33, 58, 60syl13anc 1374 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝑚 ∈ (MaxIdeal‘𝑅))
6232simprrd 773 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → 𝐼𝑚)
6361, 62jca 511 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ (𝑚 ∈ (LIdeal‘𝑅) ∧ (𝑚𝐵𝐼𝑚))) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6429, 63sylanb 581 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) ∧ 𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚))
6564expl 457 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ((𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗) → (𝑚 ∈ (MaxIdeal‘𝑅) ∧ 𝐼𝑚)))
6665reximdv2 3144 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → (∃𝑚 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)} ¬ 𝑚𝑗 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚))
6724, 66mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3916  wpss 3917  c0 4298   cuni 4873   Or wor 5547  cfv 6513   [] crpss 7700  Basecbs 17185  Ringcrg 20148  LIdealclidl 21122  MaxIdealcmxidl 33436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-rpss 7701  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-subrg 20485  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-mxidl 33437
This theorem is referenced by:  drngmxidlr  33455  krull  33456  zarcls1  33865  zarclssn  33869
  Copyright terms: Public domain W3C validator