MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcntz Structured version   Visualization version   GIF version

Theorem dprdfcntz 19927
Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdfcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdfcntz (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)   𝑍(,𝑖)

Proof of Theorem dprdfcntz
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 dprdff.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2724 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19924 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6708 . . 3 (𝜑𝐹 Fn 𝐼)
86ffvelcdmda 7076 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘𝐺))
9 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
109fveq2d 6885 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
119equcomd 2014 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → 𝑧 = 𝑦)
1211fveq2d 6885 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → (𝐹𝑧) = (𝐹𝑦))
1310, 12oveq12d 7419 . . . . . . . 8 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
142ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝐺dom DProd 𝑆)
153ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → dom 𝑆 = 𝐼)
16 simpllr 773 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑦𝐼)
17 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑧𝐼)
18 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑦𝑧)
19 dprdfcntz.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
2014, 15, 16, 17, 18, 19dprdcntz 19920 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑧)))
211, 2, 3, 4dprdfcl 19925 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
2221ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑦) ∈ (𝑆𝑦))
2320, 22sseldd 3975 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑦) ∈ (𝑍‘(𝑆𝑧)))
241, 2, 3, 4dprdfcl 19925 . . . . . . . . . 10 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ (𝑆𝑧))
2524ad4ant13 748 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑧) ∈ (𝑆𝑧))
26 eqid 2724 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2726, 19cntzi 19235 . . . . . . . . 9 (((𝐹𝑦) ∈ (𝑍‘(𝑆𝑧)) ∧ (𝐹𝑧) ∈ (𝑆𝑧)) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
2823, 25, 27syl2anc 583 . . . . . . . 8 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
2913, 28pm2.61dane 3021 . . . . . . 7 (((𝜑𝑦𝐼) ∧ 𝑧𝐼) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
3029ralrimiva 3138 . . . . . 6 ((𝜑𝑦𝐼) → ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
317adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹 Fn 𝐼)
32 oveq2 7409 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → ((𝐹𝑦)(+g𝐺)𝑥) = ((𝐹𝑦)(+g𝐺)(𝐹𝑧)))
33 oveq1 7408 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → (𝑥(+g𝐺)(𝐹𝑦)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
3432, 33eqeq12d 2740 . . . . . . . 8 (𝑥 = (𝐹𝑧) → (((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3534ralrn 7079 . . . . . . 7 (𝐹 Fn 𝐼 → (∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3631, 35syl 17 . . . . . 6 ((𝜑𝑦𝐼) → (∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3730, 36mpbird 257 . . . . 5 ((𝜑𝑦𝐼) → ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))
386frnd 6715 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
3938adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → ran 𝐹 ⊆ (Base‘𝐺))
405, 26, 19elcntz 19228 . . . . . 6 (ran 𝐹 ⊆ (Base‘𝐺) → ((𝐹𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))))
4139, 40syl 17 . . . . 5 ((𝜑𝑦𝐼) → ((𝐹𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))))
428, 37, 41mpbir2and 710 . . . 4 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (𝑍‘ran 𝐹))
4342ralrimiva 3138 . . 3 (𝜑 → ∀𝑦𝐼 (𝐹𝑦) ∈ (𝑍‘ran 𝐹))
44 ffnfv 7110 . . 3 (𝐹:𝐼⟶(𝑍‘ran 𝐹) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑦𝐼 (𝐹𝑦) ∈ (𝑍‘ran 𝐹)))
457, 43, 44sylanbrc 582 . 2 (𝜑𝐹:𝐼⟶(𝑍‘ran 𝐹))
4645frnd 6715 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  {crab 3424  wss 3940   class class class wbr 5138  dom cdm 5666  ran crn 5667   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  Xcixp 8887   finSupp cfsupp 9357  Basecbs 17143  +gcplusg 17196  Cntzccntz 19221   DProd cdprd 19905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-ixp 8888  df-subg 19040  df-cntz 19223  df-dprd 19907
This theorem is referenced by:  dprdssv  19928  dprdfinv  19931  dprdfadd  19932  dprdfeq0  19934  dprdlub  19938  dmdprdsplitlem  19949  dpjidcl  19970
  Copyright terms: Public domain W3C validator