MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcntz Structured version   Visualization version   GIF version

Theorem dprdfcntz 19931
Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdfcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdfcntz (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)   𝑍(,𝑖)

Proof of Theorem dprdfcntz
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 dprdff.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19928 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6671 . . 3 (𝜑𝐹 Fn 𝐼)
86ffvelcdmda 7038 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘𝐺))
9 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
109fveq2d 6844 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
119equcomd 2019 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → 𝑧 = 𝑦)
1211fveq2d 6844 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → (𝐹𝑧) = (𝐹𝑦))
1310, 12oveq12d 7387 . . . . . . . 8 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
142ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝐺dom DProd 𝑆)
153ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → dom 𝑆 = 𝐼)
16 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑦𝐼)
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑧𝐼)
18 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑦𝑧)
19 dprdfcntz.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
2014, 15, 16, 17, 18, 19dprdcntz 19924 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑧)))
211, 2, 3, 4dprdfcl 19929 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
2221ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑦) ∈ (𝑆𝑦))
2320, 22sseldd 3944 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑦) ∈ (𝑍‘(𝑆𝑧)))
241, 2, 3, 4dprdfcl 19929 . . . . . . . . . 10 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ (𝑆𝑧))
2524ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑧) ∈ (𝑆𝑧))
26 eqid 2729 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2726, 19cntzi 19243 . . . . . . . . 9 (((𝐹𝑦) ∈ (𝑍‘(𝑆𝑧)) ∧ (𝐹𝑧) ∈ (𝑆𝑧)) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
2823, 25, 27syl2anc 584 . . . . . . . 8 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
2913, 28pm2.61dane 3012 . . . . . . 7 (((𝜑𝑦𝐼) ∧ 𝑧𝐼) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
3029ralrimiva 3125 . . . . . 6 ((𝜑𝑦𝐼) → ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
317adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹 Fn 𝐼)
32 oveq2 7377 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → ((𝐹𝑦)(+g𝐺)𝑥) = ((𝐹𝑦)(+g𝐺)(𝐹𝑧)))
33 oveq1 7376 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → (𝑥(+g𝐺)(𝐹𝑦)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
3432, 33eqeq12d 2745 . . . . . . . 8 (𝑥 = (𝐹𝑧) → (((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3534ralrn 7042 . . . . . . 7 (𝐹 Fn 𝐼 → (∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3631, 35syl 17 . . . . . 6 ((𝜑𝑦𝐼) → (∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3730, 36mpbird 257 . . . . 5 ((𝜑𝑦𝐼) → ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))
386frnd 6678 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
3938adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → ran 𝐹 ⊆ (Base‘𝐺))
405, 26, 19elcntz 19236 . . . . . 6 (ran 𝐹 ⊆ (Base‘𝐺) → ((𝐹𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))))
4139, 40syl 17 . . . . 5 ((𝜑𝑦𝐼) → ((𝐹𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))))
428, 37, 41mpbir2and 713 . . . 4 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (𝑍‘ran 𝐹))
4342ralrimiva 3125 . . 3 (𝜑 → ∀𝑦𝐼 (𝐹𝑦) ∈ (𝑍‘ran 𝐹))
44 ffnfv 7073 . . 3 (𝐹:𝐼⟶(𝑍‘ran 𝐹) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑦𝐼 (𝐹𝑦) ∈ (𝑍‘ran 𝐹)))
457, 43, 44sylanbrc 583 . 2 (𝜑𝐹:𝐼⟶(𝑍‘ran 𝐹))
4645frnd 6678 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  wss 3911   class class class wbr 5102  dom cdm 5631  ran crn 5632   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Xcixp 8847   finSupp cfsupp 9288  Basecbs 17155  +gcplusg 17196  Cntzccntz 19229   DProd cdprd 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-ixp 8848  df-subg 19037  df-cntz 19231  df-dprd 19911
This theorem is referenced by:  dprdssv  19932  dprdfinv  19935  dprdfadd  19936  dprdfeq0  19938  dprdlub  19942  dmdprdsplitlem  19953  dpjidcl  19974
  Copyright terms: Public domain W3C validator