| Step | Hyp | Ref
| Expression |
| 1 | | dprdff.w |
. . . . 5
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 2 | | dprdff.1 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 3 | | dprdff.2 |
. . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | | dprdff.3 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 5 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 6 | 1, 2, 3, 4, 5 | dprdff 20000 |
. . . 4
⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 7 | 6 | ffnd 6712 |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 8 | 6 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (Base‘𝐺)) |
| 9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) |
| 10 | 9 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 = 𝑧) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 11 | 9 | equcomd 2019 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 = 𝑧) → 𝑧 = 𝑦) |
| 12 | 11 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 = 𝑧) → (𝐹‘𝑧) = (𝐹‘𝑦)) |
| 13 | 10, 12 | oveq12d 7428 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 = 𝑧) → ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦))) |
| 14 | 2 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → 𝐺dom DProd 𝑆) |
| 15 | 3 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → dom 𝑆 = 𝐼) |
| 16 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → 𝑦 ∈ 𝐼) |
| 17 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → 𝑧 ∈ 𝐼) |
| 18 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → 𝑦 ≠ 𝑧) |
| 19 | | dprdfcntz.z |
. . . . . . . . . . 11
⊢ 𝑍 = (Cntz‘𝐺) |
| 20 | 14, 15, 16, 17, 18, 19 | dprdcntz 19996 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → (𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑧))) |
| 21 | 1, 2, 3, 4 | dprdfcl 20001 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (𝑆‘𝑦)) |
| 22 | 21 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → (𝐹‘𝑦) ∈ (𝑆‘𝑦)) |
| 23 | 20, 22 | sseldd 3964 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → (𝐹‘𝑦) ∈ (𝑍‘(𝑆‘𝑧))) |
| 24 | 1, 2, 3, 4 | dprdfcl 20001 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) ∈ (𝑆‘𝑧)) |
| 25 | 24 | ad4ant13 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → (𝐹‘𝑧) ∈ (𝑆‘𝑧)) |
| 26 | | eqid 2736 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 27 | 26, 19 | cntzi 19317 |
. . . . . . . . 9
⊢ (((𝐹‘𝑦) ∈ (𝑍‘(𝑆‘𝑧)) ∧ (𝐹‘𝑧) ∈ (𝑆‘𝑧)) → ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦))) |
| 28 | 23, 25, 27 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) ∧ 𝑦 ≠ 𝑧) → ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦))) |
| 29 | 13, 28 | pm2.61dane 3020 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦))) |
| 30 | 29 | ralrimiva 3133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦))) |
| 31 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐹 Fn 𝐼) |
| 32 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑧) → ((𝐹‘𝑦)(+g‘𝐺)𝑥) = ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧))) |
| 33 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥(+g‘𝐺)(𝐹‘𝑦)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦))) |
| 34 | 32, 33 | eqeq12d 2752 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑧) → (((𝐹‘𝑦)(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)(𝐹‘𝑦)) ↔ ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦)))) |
| 35 | 34 | ralrn 7083 |
. . . . . . 7
⊢ (𝐹 Fn 𝐼 → (∀𝑥 ∈ ran 𝐹((𝐹‘𝑦)(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)(𝐹‘𝑦)) ↔ ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦)))) |
| 36 | 31, 35 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (∀𝑥 ∈ ran 𝐹((𝐹‘𝑦)(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)(𝐹‘𝑦)) ↔ ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦)(+g‘𝐺)(𝐹‘𝑧)) = ((𝐹‘𝑧)(+g‘𝐺)(𝐹‘𝑦)))) |
| 37 | 30, 36 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ∀𝑥 ∈ ran 𝐹((𝐹‘𝑦)(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)(𝐹‘𝑦))) |
| 38 | 6 | frnd 6719 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) |
| 39 | 38 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ran 𝐹 ⊆ (Base‘𝐺)) |
| 40 | 5, 26, 19 | elcntz 19310 |
. . . . . 6
⊢ (ran
𝐹 ⊆ (Base‘𝐺) → ((𝐹‘𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹‘𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹‘𝑦)(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)(𝐹‘𝑦))))) |
| 41 | 39, 40 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((𝐹‘𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹‘𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹‘𝑦)(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)(𝐹‘𝑦))))) |
| 42 | 8, 37, 41 | mpbir2and 713 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (𝑍‘ran 𝐹)) |
| 43 | 42 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 (𝐹‘𝑦) ∈ (𝑍‘ran 𝐹)) |
| 44 | | ffnfv 7114 |
. . 3
⊢ (𝐹:𝐼⟶(𝑍‘ran 𝐹) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝐹‘𝑦) ∈ (𝑍‘ran 𝐹))) |
| 45 | 7, 43, 44 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹:𝐼⟶(𝑍‘ran 𝐹)) |
| 46 | 45 | frnd 6719 |
1
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |