MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcntz Structured version   Visualization version   GIF version

Theorem dprdfcntz 19929
Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdfcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdfcntz (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)   𝑍(,𝑖)

Proof of Theorem dprdfcntz
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 dprdff.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2731 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19926 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6652 . . 3 (𝜑𝐹 Fn 𝐼)
86ffvelcdmda 7017 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘𝐺))
9 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
109fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → (𝐹𝑦) = (𝐹𝑧))
119equcomd 2020 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → 𝑧 = 𝑦)
1211fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → (𝐹𝑧) = (𝐹𝑦))
1310, 12oveq12d 7364 . . . . . . . 8 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦 = 𝑧) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
142ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝐺dom DProd 𝑆)
153ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → dom 𝑆 = 𝐼)
16 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑦𝐼)
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑧𝐼)
18 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → 𝑦𝑧)
19 dprdfcntz.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
2014, 15, 16, 17, 18, 19dprdcntz 19922 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑧)))
211, 2, 3, 4dprdfcl 19927 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
2221ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑦) ∈ (𝑆𝑦))
2320, 22sseldd 3930 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑦) ∈ (𝑍‘(𝑆𝑧)))
241, 2, 3, 4dprdfcl 19927 . . . . . . . . . 10 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ (𝑆𝑧))
2524ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → (𝐹𝑧) ∈ (𝑆𝑧))
26 eqid 2731 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2726, 19cntzi 19241 . . . . . . . . 9 (((𝐹𝑦) ∈ (𝑍‘(𝑆𝑧)) ∧ (𝐹𝑧) ∈ (𝑆𝑧)) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
2823, 25, 27syl2anc 584 . . . . . . . 8 ((((𝜑𝑦𝐼) ∧ 𝑧𝐼) ∧ 𝑦𝑧) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
2913, 28pm2.61dane 3015 . . . . . . 7 (((𝜑𝑦𝐼) ∧ 𝑧𝐼) → ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
3029ralrimiva 3124 . . . . . 6 ((𝜑𝑦𝐼) → ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
317adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹 Fn 𝐼)
32 oveq2 7354 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → ((𝐹𝑦)(+g𝐺)𝑥) = ((𝐹𝑦)(+g𝐺)(𝐹𝑧)))
33 oveq1 7353 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → (𝑥(+g𝐺)(𝐹𝑦)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦)))
3432, 33eqeq12d 2747 . . . . . . . 8 (𝑥 = (𝐹𝑧) → (((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3534ralrn 7021 . . . . . . 7 (𝐹 Fn 𝐼 → (∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3631, 35syl 17 . . . . . 6 ((𝜑𝑦𝐼) → (∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)) ↔ ∀𝑧𝐼 ((𝐹𝑦)(+g𝐺)(𝐹𝑧)) = ((𝐹𝑧)(+g𝐺)(𝐹𝑦))))
3730, 36mpbird 257 . . . . 5 ((𝜑𝑦𝐼) → ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))
386frnd 6659 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
3938adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → ran 𝐹 ⊆ (Base‘𝐺))
405, 26, 19elcntz 19234 . . . . . 6 (ran 𝐹 ⊆ (Base‘𝐺) → ((𝐹𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))))
4139, 40syl 17 . . . . 5 ((𝜑𝑦𝐼) → ((𝐹𝑦) ∈ (𝑍‘ran 𝐹) ↔ ((𝐹𝑦) ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ ran 𝐹((𝐹𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)(𝐹𝑦)))))
428, 37, 41mpbir2and 713 . . . 4 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (𝑍‘ran 𝐹))
4342ralrimiva 3124 . . 3 (𝜑 → ∀𝑦𝐼 (𝐹𝑦) ∈ (𝑍‘ran 𝐹))
44 ffnfv 7052 . . 3 (𝐹:𝐼⟶(𝑍‘ran 𝐹) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑦𝐼 (𝐹𝑦) ∈ (𝑍‘ran 𝐹)))
457, 43, 44sylanbrc 583 . 2 (𝜑𝐹:𝐼⟶(𝑍‘ran 𝐹))
4645frnd 6659 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  wss 3897   class class class wbr 5089  dom cdm 5614  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Xcixp 8821   finSupp cfsupp 9245  Basecbs 17120  +gcplusg 17161  Cntzccntz 19227   DProd cdprd 19907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-subg 19036  df-cntz 19229  df-dprd 19909
This theorem is referenced by:  dprdssv  19930  dprdfinv  19933  dprdfadd  19934  dprdfeq0  19936  dprdlub  19940  dmdprdsplitlem  19951  dpjidcl  19972
  Copyright terms: Public domain W3C validator