| Step | Hyp | Ref
| Expression |
| 1 | | prssspr 47466 |
. . . . . 6
⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑝 ∈ 𝑎) → ∃𝑖 ∈ 𝑉 ∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗}) |
| 2 | 1 | ad4ant14 752 |
. . . . 5
⊢ ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → ∃𝑖 ∈ 𝑉 ∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗}) |
| 3 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗}) |
| 4 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → 𝑝 = {𝑖, 𝑗}) |
| 5 | 4 | eleq1d 2820 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝 ∈ 𝑎 ↔ {𝑖, 𝑗} ∈ 𝑎)) |
| 6 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → {𝑖, 𝑗} ∈ 𝑎) |
| 7 | | eqeq1 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = {𝑖, 𝑗} → (𝑐 = {𝑖, 𝑗} ↔ {𝑖, 𝑗} = {𝑖, 𝑗})) |
| 8 | 7 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 = {𝑖, 𝑗} ↔ {𝑖, 𝑗} = {𝑖, 𝑗})) |
| 9 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → {𝑖, 𝑗} = {𝑖, 𝑗}) |
| 10 | 6, 8, 9 | rspcedvd 3608 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗}) |
| 11 | 10 | adantlr 715 |
. . . . . . . . . . . 12
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗}) |
| 12 | | preq12 4716 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → {𝑥, 𝑦} = {𝑖, 𝑗}) |
| 13 | 12 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑖, 𝑗})) |
| 14 | 13 | rexbidv 3165 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗})) |
| 15 | 14 | opelopabga 5513 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗})) |
| 16 | 15 | bicomd 223 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) → (∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 17 | 16 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → (∃𝑐 ∈ 𝑎 𝑐 = {𝑖, 𝑗} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 18 | 11, 17 | mpbid 232 |
. . . . . . . . . . 11
⊢
(((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}}) |
| 19 | 18 | ex 412 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → ({𝑖, 𝑗} ∈ 𝑎 → 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 20 | 5, 19 | sylbid 240 |
. . . . . . . . 9
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝 ∈ 𝑎 → 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}})) |
| 21 | | eleq2 2824 |
. . . . . . . . . . 11
⊢
({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) |
| 22 | 21 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} ↔ 〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) |
| 23 | 13 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗})) |
| 24 | 23 | opelopabga 5513 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ V ∧ 𝑗 ∈ V) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗})) |
| 25 | 24 | el2v 3471 |
. . . . . . . . . . 11
⊢
(〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗}) |
| 26 | | eqtr3 2758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → 𝑝 = 𝑐) |
| 27 | 26 | equcomd 2019 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → 𝑐 = 𝑝) |
| 28 | 27 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 ∈ 𝑏 ↔ 𝑝 ∈ 𝑏)) |
| 29 | 28 | biimpd 229 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 ∈ 𝑏 → 𝑝 ∈ 𝑏)) |
| 30 | 29 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = {𝑖, 𝑗} → (𝑐 = {𝑖, 𝑗} → (𝑐 ∈ 𝑏 → 𝑝 ∈ 𝑏))) |
| 31 | 30 | com13 88 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ 𝑏 → (𝑐 = {𝑖, 𝑗} → (𝑝 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏))) |
| 32 | 31 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ 𝑏 ∧ 𝑐 = {𝑖, 𝑗}) → (𝑝 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 33 | 32 | rexlimiva 3134 |
. . . . . . . . . . . . . 14
⊢
(∃𝑐 ∈
𝑏 𝑐 = {𝑖, 𝑗} → (𝑝 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 34 | 33 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {𝑖, 𝑗} → (∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → (∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (∃𝑐 ∈ 𝑏 𝑐 = {𝑖, 𝑗} → 𝑝 ∈ 𝑏)) |
| 37 | 25, 36 | biimtrid 242 |
. . . . . . . . . 10
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ 𝑏)) |
| 38 | 22, 37 | sylbid 240 |
. . . . . . . . 9
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (〈𝑖, 𝑗〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ 𝑏)) |
| 39 | 20, 38 | syld 47 |
. . . . . . . 8
⊢ ((((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝 ∈ 𝑎 → 𝑝 ∈ 𝑏)) |
| 40 | 39 | expimpd 453 |
. . . . . . 7
⊢ (((𝑖 ∈ 𝑉 ∧ 𝑗 ∈ 𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏)) |
| 41 | 40 | rexlimdva2 3144 |
. . . . . 6
⊢ (𝑖 ∈ 𝑉 → (∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏))) |
| 42 | 41 | rexlimiv 3135 |
. . . . 5
⊢
(∃𝑖 ∈
𝑉 ∃𝑗 ∈ 𝑉 𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏)) |
| 43 | 2, 42 | mpcom 38 |
. . . 4
⊢ ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑏) |
| 44 | 43 | ex 412 |
. . 3
⊢ (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) → (𝑝 ∈ 𝑎 → 𝑝 ∈ 𝑏)) |
| 45 | 44 | ssrdv 3969 |
. 2
⊢ (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎 ⊆ 𝑏) |
| 46 | 45 | ex 412 |
1
⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) |