Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf1lem Structured version   Visualization version   GIF version

Theorem sprsymrelf1lem 43673
Description: Lemma for sprsymrelf1 43678. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
sprsymrelf1lem ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎𝑏))
Distinct variable groups:   𝑉,𝑐   𝑎,𝑏,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sprsymrelf1lem
Dummy variables 𝑝 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssspr 43667 . . . . . 6 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑝𝑎) → ∃𝑖𝑉𝑗𝑉 𝑝 = {𝑖, 𝑗})
21ad4ant14 750 . . . . 5 ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝𝑎) → ∃𝑖𝑉𝑗𝑉 𝑝 = {𝑖, 𝑗})
3 simpr 487 . . . . . . . . . . . 12 (((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗})
43adantr 483 . . . . . . . . . . 11 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → 𝑝 = {𝑖, 𝑗})
54eleq1d 2897 . . . . . . . . . 10 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝𝑎 ↔ {𝑖, 𝑗} ∈ 𝑎))
6 simpr 487 . . . . . . . . . . . . . 14 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → {𝑖, 𝑗} ∈ 𝑎)
7 eqeq1 2825 . . . . . . . . . . . . . . 15 (𝑐 = {𝑖, 𝑗} → (𝑐 = {𝑖, 𝑗} ↔ {𝑖, 𝑗} = {𝑖, 𝑗}))
87adantl 484 . . . . . . . . . . . . . 14 (((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐 = {𝑖, 𝑗} ↔ {𝑖, 𝑗} = {𝑖, 𝑗}))
9 eqidd 2822 . . . . . . . . . . . . . 14 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → {𝑖, 𝑗} = {𝑖, 𝑗})
106, 8, 9rspcedvd 3626 . . . . . . . . . . . . 13 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ {𝑖, 𝑗} ∈ 𝑎) → ∃𝑐𝑎 𝑐 = {𝑖, 𝑗})
1110adantlr 713 . . . . . . . . . . . 12 (((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → ∃𝑐𝑎 𝑐 = {𝑖, 𝑗})
12 preq12 4671 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑖𝑦 = 𝑗) → {𝑥, 𝑦} = {𝑖, 𝑗})
1312eqeq2d 2832 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑖, 𝑗}))
1413rexbidv 3297 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑖𝑦 = 𝑗) → (∃𝑐𝑎 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑎 𝑐 = {𝑖, 𝑗}))
1514opelopabga 5420 . . . . . . . . . . . . . 14 ((𝑖𝑉𝑗𝑉) → (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐𝑎 𝑐 = {𝑖, 𝑗}))
1615bicomd 225 . . . . . . . . . . . . 13 ((𝑖𝑉𝑗𝑉) → (∃𝑐𝑎 𝑐 = {𝑖, 𝑗} ↔ ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}}))
1716ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → (∃𝑐𝑎 𝑐 = {𝑖, 𝑗} ↔ ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}}))
1811, 17mpbid 234 . . . . . . . . . . 11 (((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) ∧ {𝑖, 𝑗} ∈ 𝑎) → ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
1918ex 415 . . . . . . . . . 10 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → ({𝑖, 𝑗} ∈ 𝑎 → ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}}))
205, 19sylbid 242 . . . . . . . . 9 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝𝑎 → ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}}))
21 eleq2 2901 . . . . . . . . . . 11 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} ↔ ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}))
2221ad2antll 727 . . . . . . . . . 10 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} ↔ ⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}))
2313rexbidv 3297 . . . . . . . . . . . . 13 ((𝑥 = 𝑖𝑦 = 𝑗) → (∃𝑐𝑏 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑏 𝑐 = {𝑖, 𝑗}))
2423opelopabga 5420 . . . . . . . . . . . 12 ((𝑖 ∈ V ∧ 𝑗 ∈ V) → (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐𝑏 𝑐 = {𝑖, 𝑗}))
2524el2v 3501 . . . . . . . . . . 11 (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐𝑏 𝑐 = {𝑖, 𝑗})
26 eqtr3 2843 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → 𝑝 = 𝑐)
2726equcomd 2026 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → 𝑐 = 𝑝)
2827eleq1d 2897 . . . . . . . . . . . . . . . . . . 19 ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐𝑏𝑝𝑏))
2928biimpd 231 . . . . . . . . . . . . . . . . . 18 ((𝑝 = {𝑖, 𝑗} ∧ 𝑐 = {𝑖, 𝑗}) → (𝑐𝑏𝑝𝑏))
3029ex 415 . . . . . . . . . . . . . . . . 17 (𝑝 = {𝑖, 𝑗} → (𝑐 = {𝑖, 𝑗} → (𝑐𝑏𝑝𝑏)))
3130com13 88 . . . . . . . . . . . . . . . 16 (𝑐𝑏 → (𝑐 = {𝑖, 𝑗} → (𝑝 = {𝑖, 𝑗} → 𝑝𝑏)))
3231imp 409 . . . . . . . . . . . . . . 15 ((𝑐𝑏𝑐 = {𝑖, 𝑗}) → (𝑝 = {𝑖, 𝑗} → 𝑝𝑏))
3332rexlimiva 3281 . . . . . . . . . . . . . 14 (∃𝑐𝑏 𝑐 = {𝑖, 𝑗} → (𝑝 = {𝑖, 𝑗} → 𝑝𝑏))
3433com12 32 . . . . . . . . . . . . 13 (𝑝 = {𝑖, 𝑗} → (∃𝑐𝑏 𝑐 = {𝑖, 𝑗} → 𝑝𝑏))
3534adantl 484 . . . . . . . . . . . 12 (((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → (∃𝑐𝑏 𝑐 = {𝑖, 𝑗} → 𝑝𝑏))
3635adantr 483 . . . . . . . . . . 11 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (∃𝑐𝑏 𝑐 = {𝑖, 𝑗} → 𝑝𝑏))
3725, 36syl5bi 244 . . . . . . . . . 10 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑝𝑏))
3822, 37sylbid 242 . . . . . . . . 9 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (⟨𝑖, 𝑗⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} → 𝑝𝑏))
3920, 38syld 47 . . . . . . . 8 ((((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) ∧ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})) → (𝑝𝑎𝑝𝑏))
4039expimpd 456 . . . . . . 7 (((𝑖𝑉𝑗𝑉) ∧ 𝑝 = {𝑖, 𝑗}) → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝𝑎) → 𝑝𝑏))
4140rexlimdva2 3287 . . . . . 6 (𝑖𝑉 → (∃𝑗𝑉 𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝𝑎) → 𝑝𝑏)))
4241rexlimiv 3280 . . . . 5 (∃𝑖𝑉𝑗𝑉 𝑝 = {𝑖, 𝑗} → ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝𝑎) → 𝑝𝑏))
432, 42mpcom 38 . . . 4 ((((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) ∧ 𝑝𝑎) → 𝑝𝑏)
4443ex 415 . . 3 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → (𝑝𝑎𝑝𝑏))
4544ssrdv 3973 . 2 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎𝑏)
4645ex 415 1 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  wss 3936  {cpr 4569  cop 4573  {copab 5128  cfv 6355  Pairscspr 43659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-spr 43660
This theorem is referenced by:  sprsymrelf1  43678
  Copyright terms: Public domain W3C validator