Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonar Structured version   Visualization version   GIF version

Theorem gonar 32527
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonar ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonar
Dummy variables 𝑖 𝑗 𝑥 𝑢 𝑣 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gonan0 32524 . . 3 ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 482 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7588 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑥 ∈ ω 𝑁 = suc 𝑥)
4 suceq 6253 . . . . . . . . . . 11 (𝑑 = ∅ → suc 𝑑 = suc ∅)
54fveq2d 6670 . . . . . . . . . 10 (𝑑 = ∅ → (Fmla‘suc 𝑑) = (Fmla‘suc ∅))
65eleq2d 2902 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc ∅)))
75eleq2d 2902 . . . . . . . . . 10 (𝑑 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
85eleq2d 2902 . . . . . . . . . 10 (𝑑 = ∅ → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc ∅)))
97, 8anbi12d 630 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
106, 9imbi12d 346 . . . . . . . 8 (𝑑 = ∅ → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))))
11 suceq 6253 . . . . . . . . . . 11 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1211fveq2d 6670 . . . . . . . . . 10 (𝑑 = 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑐))
1312eleq2d 2902 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐)))
1412eleq2d 2902 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑐)))
1512eleq2d 2902 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑐)))
1614, 15anbi12d 630 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))))
1713, 16imbi12d 346 . . . . . . . 8 (𝑑 = 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐)))))
18 suceq 6253 . . . . . . . . . . 11 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1918fveq2d 6670 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc suc 𝑐))
2019eleq2d 2902 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐)))
2119eleq2d 2902 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑐)))
2219eleq2d 2902 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc suc 𝑐)))
2321, 22anbi12d 630 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐))))
2420, 23imbi12d 346 . . . . . . . 8 (𝑑 = suc 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
25 suceq 6253 . . . . . . . . . . 11 (𝑑 = 𝑥 → suc 𝑑 = suc 𝑥)
2625fveq2d 6670 . . . . . . . . . 10 (𝑑 = 𝑥 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑥))
2726eleq2d 2902 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
2826eleq2d 2902 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
2926eleq2d 2902 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
3028, 29anbi12d 630 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
3127, 30imbi12d 346 . . . . . . . 8 (𝑑 = 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
32 peano1 7592 . . . . . . . . . 10 ∅ ∈ ω
33 ovex 7184 . . . . . . . . . 10 (𝑎𝑔𝑏) ∈ V
34 isfmlasuc 32520 . . . . . . . . . 10 ((∅ ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
3532, 33, 34mp2an 688 . . . . . . . . 9 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)))
36 eqeq1 2828 . . . . . . . . . . . . 13 (𝑥 = (𝑎𝑔𝑏) → (𝑥 = (𝑖𝑔𝑗) ↔ (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
37362rexbidv 3304 . . . . . . . . . . . 12 (𝑥 = (𝑎𝑔𝑏) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
38 fmla0 32514 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3937, 38elrab2 3686 . . . . . . . . . . 11 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ↔ ((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
40 gonafv 32482 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
4140el2v 3506 . . . . . . . . . . . . . . . . 17 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
43 goel 32479 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
4442, 43eqeq12d 2840 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
45 1oex 8104 . . . . . . . . . . . . . . . . 17 1o ∈ V
46 opex 5352 . . . . . . . . . . . . . . . . 17 𝑎, 𝑏⟩ ∈ V
4745, 46opth 5364 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩))
48 1n0 8113 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
49 eqneqall 3031 . . . . . . . . . . . . . . . . . 18 (1o = ∅ → (1o ≠ ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5048, 49mpi 20 . . . . . . . . . . . . . . . . 17 (1o = ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5150adantr 481 . . . . . . . . . . . . . . . 16 ((1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5247, 51sylbi 218 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5344, 52syl6bi 254 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5453rexlimdva 3288 . . . . . . . . . . . . 13 (𝑖 ∈ ω → (∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5554rexlimiv 3284 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5655adantl 482 . . . . . . . . . . 11 (((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5739, 56sylbi 218 . . . . . . . . . 10 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5841a1i 11 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
59 gonafv 32482 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
6058, 59eqeq12d 2840 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
6145, 46opth 5364 . . . . . . . . . . . . . . . . 17 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
62 vex 3502 . . . . . . . . . . . . . . . . . . . 20 𝑎 ∈ V
63 vex 3502 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
6462, 63opth 5364 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
65 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
6665equcomd 2019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑢 = 𝑎)
6766eleq1d 2901 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
68 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
6968equcomd 2019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑣 = 𝑏)
7069eleq1d 2901 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑣 ∈ (Fmla‘∅) ↔ 𝑏 ∈ (Fmla‘∅)))
7167, 70anbi12d 630 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7264, 71sylbi 218 . . . . . . . . . . . . . . . . . 18 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7372adantl 482 . . . . . . . . . . . . . . . . 17 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7461, 73sylbi 218 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
75 fmlasssuc 32521 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
7632, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
7776sseli 3966 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
7876sseli 3966 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fmla‘∅) → 𝑏 ∈ (Fmla‘suc ∅))
7977, 78anim12i 612 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8074, 79syl6bi 254 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8180com12 32 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8260, 81sylbid 241 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8382rexlimdva 3288 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
84 gonanegoal 32484 . . . . . . . . . . . . . . 15 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
85 eqneqall 3031 . . . . . . . . . . . . . . 15 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8684, 85mpi 20 . . . . . . . . . . . . . 14 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8786a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8887rexlimdva 3288 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8983, 88jaod 855 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
9089rexlimiv 3284 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9157, 90jaoi 853 . . . . . . . . 9 (((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9235, 91sylbi 218 . . . . . . . 8 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
93 gonarlem 32526 . . . . . . . 8 (𝑐 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
9410, 17, 24, 31, 92, 93finds 7599 . . . . . . 7 (𝑥 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
9594adantr 481 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
96 fveq2 6666 . . . . . . . . 9 (𝑁 = suc 𝑥 → (Fmla‘𝑁) = (Fmla‘suc 𝑥))
9796eleq2d 2902 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
9896eleq2d 2902 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
9996eleq2d 2902 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑏 ∈ (Fmla‘𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
10098, 99anbi12d 630 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
10197, 100imbi12d 346 . . . . . . 7 (𝑁 = suc 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
102101adantl 482 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
10395, 102mpbird 258 . . . . 5 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
104103rexlimiva 3285 . . . 4 (∃𝑥 ∈ ω 𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1053, 104syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
106105impancom 452 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1072, 106mpd 15 1 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2106  wne 3020  wrex 3143  Vcvv 3499  wss 3939  c0 4294  cop 4569  suc csuc 6190  cfv 6351  (class class class)co 7151  ωcom 7571  1oc1o 8089  𝑔cgoe 32465  𝑔cgna 32466  𝑔cgol 32467  Fmlacfmla 32469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-map 8401  df-goel 32472  df-gona 32473  df-goal 32474  df-sat 32475  df-fmla 32477
This theorem is referenced by:  fmlasucdisj  32531
  Copyright terms: Public domain W3C validator