Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonar Structured version   Visualization version   GIF version

Theorem gonar 35417
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonar ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonar
Dummy variables 𝑖 𝑗 𝑥 𝑢 𝑣 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gonan0 35414 . . 3 ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7879 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑥 ∈ ω 𝑁 = suc 𝑥)
4 suceq 6419 . . . . . . . . . . 11 (𝑑 = ∅ → suc 𝑑 = suc ∅)
54fveq2d 6880 . . . . . . . . . 10 (𝑑 = ∅ → (Fmla‘suc 𝑑) = (Fmla‘suc ∅))
65eleq2d 2820 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc ∅)))
75eleq2d 2820 . . . . . . . . . 10 (𝑑 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
85eleq2d 2820 . . . . . . . . . 10 (𝑑 = ∅ → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc ∅)))
97, 8anbi12d 632 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
106, 9imbi12d 344 . . . . . . . 8 (𝑑 = ∅ → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))))
11 suceq 6419 . . . . . . . . . . 11 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1211fveq2d 6880 . . . . . . . . . 10 (𝑑 = 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑐))
1312eleq2d 2820 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐)))
1412eleq2d 2820 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑐)))
1512eleq2d 2820 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑐)))
1614, 15anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))))
1713, 16imbi12d 344 . . . . . . . 8 (𝑑 = 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐)))))
18 suceq 6419 . . . . . . . . . . 11 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1918fveq2d 6880 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc suc 𝑐))
2019eleq2d 2820 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐)))
2119eleq2d 2820 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑐)))
2219eleq2d 2820 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc suc 𝑐)))
2321, 22anbi12d 632 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐))))
2420, 23imbi12d 344 . . . . . . . 8 (𝑑 = suc 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
25 suceq 6419 . . . . . . . . . . 11 (𝑑 = 𝑥 → suc 𝑑 = suc 𝑥)
2625fveq2d 6880 . . . . . . . . . 10 (𝑑 = 𝑥 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑥))
2726eleq2d 2820 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
2826eleq2d 2820 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
2926eleq2d 2820 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
3127, 30imbi12d 344 . . . . . . . 8 (𝑑 = 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
32 peano1 7884 . . . . . . . . . 10 ∅ ∈ ω
33 ovex 7438 . . . . . . . . . 10 (𝑎𝑔𝑏) ∈ V
34 isfmlasuc 35410 . . . . . . . . . 10 ((∅ ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
3532, 33, 34mp2an 692 . . . . . . . . 9 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)))
36 eqeq1 2739 . . . . . . . . . . . . 13 (𝑥 = (𝑎𝑔𝑏) → (𝑥 = (𝑖𝑔𝑗) ↔ (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
37362rexbidv 3206 . . . . . . . . . . . 12 (𝑥 = (𝑎𝑔𝑏) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
38 fmla0 35404 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3937, 38elrab2 3674 . . . . . . . . . . 11 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ↔ ((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
40 gonafv 35372 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
4140el2v 3466 . . . . . . . . . . . . . . . . 17 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
43 goel 35369 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
4442, 43eqeq12d 2751 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
45 1oex 8490 . . . . . . . . . . . . . . . . 17 1o ∈ V
46 opex 5439 . . . . . . . . . . . . . . . . 17 𝑎, 𝑏⟩ ∈ V
4745, 46opth 5451 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩))
48 1n0 8500 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
49 eqneqall 2943 . . . . . . . . . . . . . . . . . 18 (1o = ∅ → (1o ≠ ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5048, 49mpi 20 . . . . . . . . . . . . . . . . 17 (1o = ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5247, 51sylbi 217 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5344, 52biimtrdi 253 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5453rexlimdva 3141 . . . . . . . . . . . . 13 (𝑖 ∈ ω → (∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5554rexlimiv 3134 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5655adantl 481 . . . . . . . . . . 11 (((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5739, 56sylbi 217 . . . . . . . . . 10 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5841a1i 11 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
59 gonafv 35372 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
6058, 59eqeq12d 2751 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
6145, 46opth 5451 . . . . . . . . . . . . . . . . 17 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
62 vex 3463 . . . . . . . . . . . . . . . . . . . 20 𝑎 ∈ V
63 vex 3463 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
6462, 63opth 5451 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
65 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
6665equcomd 2018 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑢 = 𝑎)
6766eleq1d 2819 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
6968equcomd 2018 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑣 = 𝑏)
7069eleq1d 2819 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑣 ∈ (Fmla‘∅) ↔ 𝑏 ∈ (Fmla‘∅)))
7167, 70anbi12d 632 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7264, 71sylbi 217 . . . . . . . . . . . . . . . . . 18 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7372adantl 481 . . . . . . . . . . . . . . . . 17 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7461, 73sylbi 217 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
75 fmlasssuc 35411 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
7632, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
7776sseli 3954 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
7876sseli 3954 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fmla‘∅) → 𝑏 ∈ (Fmla‘suc ∅))
7977, 78anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8074, 79biimtrdi 253 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8180com12 32 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8260, 81sylbid 240 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8382rexlimdva 3141 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
84 gonanegoal 35374 . . . . . . . . . . . . . . 15 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
85 eqneqall 2943 . . . . . . . . . . . . . . 15 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8684, 85mpi 20 . . . . . . . . . . . . . 14 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8786a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8887rexlimdva 3141 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8983, 88jaod 859 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
9089rexlimiv 3134 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9157, 90jaoi 857 . . . . . . . . 9 (((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9235, 91sylbi 217 . . . . . . . 8 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
93 gonarlem 35416 . . . . . . . 8 (𝑐 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
9410, 17, 24, 31, 92, 93finds 7892 . . . . . . 7 (𝑥 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
9594adantr 480 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
96 fveq2 6876 . . . . . . . . 9 (𝑁 = suc 𝑥 → (Fmla‘𝑁) = (Fmla‘suc 𝑥))
9796eleq2d 2820 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
9896eleq2d 2820 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
9996eleq2d 2820 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑏 ∈ (Fmla‘𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
10098, 99anbi12d 632 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
10197, 100imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
102101adantl 481 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
10395, 102mpbird 257 . . . . 5 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
104103rexlimiva 3133 . . . 4 (∃𝑥 ∈ ω 𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1053, 104syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
106105impancom 451 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1072, 106mpd 15 1 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  wss 3926  c0 4308  cop 4607  suc csuc 6354  cfv 6531  (class class class)co 7405  ωcom 7861  1oc1o 8473  𝑔cgoe 35355  𝑔cgna 35356  𝑔cgol 35357  Fmlacfmla 35359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-map 8842  df-goel 35362  df-gona 35363  df-goal 35364  df-sat 35365  df-fmla 35367
This theorem is referenced by:  fmlasucdisj  35421
  Copyright terms: Public domain W3C validator