Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonar Structured version   Visualization version   GIF version

Theorem gonar 33257
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonar ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonar
Dummy variables 𝑖 𝑗 𝑥 𝑢 𝑣 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gonan0 33254 . . 3 ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7705 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑥 ∈ ω 𝑁 = suc 𝑥)
4 suceq 6316 . . . . . . . . . . 11 (𝑑 = ∅ → suc 𝑑 = suc ∅)
54fveq2d 6760 . . . . . . . . . 10 (𝑑 = ∅ → (Fmla‘suc 𝑑) = (Fmla‘suc ∅))
65eleq2d 2824 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc ∅)))
75eleq2d 2824 . . . . . . . . . 10 (𝑑 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
85eleq2d 2824 . . . . . . . . . 10 (𝑑 = ∅ → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc ∅)))
97, 8anbi12d 630 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
106, 9imbi12d 344 . . . . . . . 8 (𝑑 = ∅ → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))))
11 suceq 6316 . . . . . . . . . . 11 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1211fveq2d 6760 . . . . . . . . . 10 (𝑑 = 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑐))
1312eleq2d 2824 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐)))
1412eleq2d 2824 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑐)))
1512eleq2d 2824 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑐)))
1614, 15anbi12d 630 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))))
1713, 16imbi12d 344 . . . . . . . 8 (𝑑 = 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐)))))
18 suceq 6316 . . . . . . . . . . 11 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1918fveq2d 6760 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc suc 𝑐))
2019eleq2d 2824 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐)))
2119eleq2d 2824 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑐)))
2219eleq2d 2824 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc suc 𝑐)))
2321, 22anbi12d 630 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐))))
2420, 23imbi12d 344 . . . . . . . 8 (𝑑 = suc 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
25 suceq 6316 . . . . . . . . . . 11 (𝑑 = 𝑥 → suc 𝑑 = suc 𝑥)
2625fveq2d 6760 . . . . . . . . . 10 (𝑑 = 𝑥 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑥))
2726eleq2d 2824 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
2826eleq2d 2824 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
2926eleq2d 2824 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
3028, 29anbi12d 630 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
3127, 30imbi12d 344 . . . . . . . 8 (𝑑 = 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
32 peano1 7710 . . . . . . . . . 10 ∅ ∈ ω
33 ovex 7288 . . . . . . . . . 10 (𝑎𝑔𝑏) ∈ V
34 isfmlasuc 33250 . . . . . . . . . 10 ((∅ ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
3532, 33, 34mp2an 688 . . . . . . . . 9 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)))
36 eqeq1 2742 . . . . . . . . . . . . 13 (𝑥 = (𝑎𝑔𝑏) → (𝑥 = (𝑖𝑔𝑗) ↔ (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
37362rexbidv 3228 . . . . . . . . . . . 12 (𝑥 = (𝑎𝑔𝑏) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
38 fmla0 33244 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3937, 38elrab2 3620 . . . . . . . . . . 11 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ↔ ((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
40 gonafv 33212 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
4140el2v 3430 . . . . . . . . . . . . . . . . 17 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
43 goel 33209 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
4442, 43eqeq12d 2754 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
45 1oex 8280 . . . . . . . . . . . . . . . . 17 1o ∈ V
46 opex 5373 . . . . . . . . . . . . . . . . 17 𝑎, 𝑏⟩ ∈ V
4745, 46opth 5385 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩))
48 1n0 8286 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
49 eqneqall 2953 . . . . . . . . . . . . . . . . . 18 (1o = ∅ → (1o ≠ ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5048, 49mpi 20 . . . . . . . . . . . . . . . . 17 (1o = ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5247, 51sylbi 216 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5344, 52syl6bi 252 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5453rexlimdva 3212 . . . . . . . . . . . . 13 (𝑖 ∈ ω → (∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5554rexlimiv 3208 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5655adantl 481 . . . . . . . . . . 11 (((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5739, 56sylbi 216 . . . . . . . . . 10 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5841a1i 11 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
59 gonafv 33212 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
6058, 59eqeq12d 2754 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
6145, 46opth 5385 . . . . . . . . . . . . . . . . 17 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
62 vex 3426 . . . . . . . . . . . . . . . . . . . 20 𝑎 ∈ V
63 vex 3426 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
6462, 63opth 5385 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
65 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
6665equcomd 2023 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑢 = 𝑎)
6766eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
6968equcomd 2023 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑣 = 𝑏)
7069eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑣 ∈ (Fmla‘∅) ↔ 𝑏 ∈ (Fmla‘∅)))
7167, 70anbi12d 630 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7264, 71sylbi 216 . . . . . . . . . . . . . . . . . 18 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7372adantl 481 . . . . . . . . . . . . . . . . 17 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7461, 73sylbi 216 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
75 fmlasssuc 33251 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
7632, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
7776sseli 3913 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
7876sseli 3913 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fmla‘∅) → 𝑏 ∈ (Fmla‘suc ∅))
7977, 78anim12i 612 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8074, 79syl6bi 252 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8180com12 32 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8260, 81sylbid 239 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8382rexlimdva 3212 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
84 gonanegoal 33214 . . . . . . . . . . . . . . 15 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
85 eqneqall 2953 . . . . . . . . . . . . . . 15 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8684, 85mpi 20 . . . . . . . . . . . . . 14 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8786a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8887rexlimdva 3212 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8983, 88jaod 855 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
9089rexlimiv 3208 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9157, 90jaoi 853 . . . . . . . . 9 (((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9235, 91sylbi 216 . . . . . . . 8 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
93 gonarlem 33256 . . . . . . . 8 (𝑐 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
9410, 17, 24, 31, 92, 93finds 7719 . . . . . . 7 (𝑥 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
9594adantr 480 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
96 fveq2 6756 . . . . . . . . 9 (𝑁 = suc 𝑥 → (Fmla‘𝑁) = (Fmla‘suc 𝑥))
9796eleq2d 2824 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
9896eleq2d 2824 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
9996eleq2d 2824 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑏 ∈ (Fmla‘𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
10098, 99anbi12d 630 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
10197, 100imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
102101adantl 481 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
10395, 102mpbird 256 . . . . 5 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
104103rexlimiva 3209 . . . 4 (∃𝑥 ∈ ω 𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1053, 104syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
106105impancom 451 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1072, 106mpd 15 1 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  wss 3883  c0 4253  cop 4564  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-map 8575  df-goel 33202  df-gona 33203  df-goal 33204  df-sat 33205  df-fmla 33207
This theorem is referenced by:  fmlasucdisj  33261
  Copyright terms: Public domain W3C validator