Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonar Structured version   Visualization version   GIF version

Theorem gonar 35355
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonar ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonar
Dummy variables 𝑖 𝑗 𝑥 𝑢 𝑣 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gonan0 35352 . . 3 ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7840 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑥 ∈ ω 𝑁 = suc 𝑥)
4 suceq 6388 . . . . . . . . . . 11 (𝑑 = ∅ → suc 𝑑 = suc ∅)
54fveq2d 6844 . . . . . . . . . 10 (𝑑 = ∅ → (Fmla‘suc 𝑑) = (Fmla‘suc ∅))
65eleq2d 2814 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc ∅)))
75eleq2d 2814 . . . . . . . . . 10 (𝑑 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
85eleq2d 2814 . . . . . . . . . 10 (𝑑 = ∅ → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc ∅)))
97, 8anbi12d 632 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
106, 9imbi12d 344 . . . . . . . 8 (𝑑 = ∅ → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))))
11 suceq 6388 . . . . . . . . . . 11 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1211fveq2d 6844 . . . . . . . . . 10 (𝑑 = 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑐))
1312eleq2d 2814 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐)))
1412eleq2d 2814 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑐)))
1512eleq2d 2814 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑐)))
1614, 15anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))))
1713, 16imbi12d 344 . . . . . . . 8 (𝑑 = 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐)))))
18 suceq 6388 . . . . . . . . . . 11 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1918fveq2d 6844 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc suc 𝑐))
2019eleq2d 2814 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐)))
2119eleq2d 2814 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑐)))
2219eleq2d 2814 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc suc 𝑐)))
2321, 22anbi12d 632 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐))))
2420, 23imbi12d 344 . . . . . . . 8 (𝑑 = suc 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
25 suceq 6388 . . . . . . . . . . 11 (𝑑 = 𝑥 → suc 𝑑 = suc 𝑥)
2625fveq2d 6844 . . . . . . . . . 10 (𝑑 = 𝑥 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑥))
2726eleq2d 2814 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
2826eleq2d 2814 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
2926eleq2d 2814 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
3127, 30imbi12d 344 . . . . . . . 8 (𝑑 = 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
32 peano1 7845 . . . . . . . . . 10 ∅ ∈ ω
33 ovex 7402 . . . . . . . . . 10 (𝑎𝑔𝑏) ∈ V
34 isfmlasuc 35348 . . . . . . . . . 10 ((∅ ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
3532, 33, 34mp2an 692 . . . . . . . . 9 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)))
36 eqeq1 2733 . . . . . . . . . . . . 13 (𝑥 = (𝑎𝑔𝑏) → (𝑥 = (𝑖𝑔𝑗) ↔ (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
37362rexbidv 3200 . . . . . . . . . . . 12 (𝑥 = (𝑎𝑔𝑏) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
38 fmla0 35342 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3937, 38elrab2 3659 . . . . . . . . . . 11 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ↔ ((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
40 gonafv 35310 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
4140el2v 3451 . . . . . . . . . . . . . . . . 17 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
43 goel 35307 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
4442, 43eqeq12d 2745 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
45 1oex 8421 . . . . . . . . . . . . . . . . 17 1o ∈ V
46 opex 5419 . . . . . . . . . . . . . . . . 17 𝑎, 𝑏⟩ ∈ V
4745, 46opth 5431 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩))
48 1n0 8429 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
49 eqneqall 2936 . . . . . . . . . . . . . . . . . 18 (1o = ∅ → (1o ≠ ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5048, 49mpi 20 . . . . . . . . . . . . . . . . 17 (1o = ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5247, 51sylbi 217 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5344, 52biimtrdi 253 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5453rexlimdva 3134 . . . . . . . . . . . . 13 (𝑖 ∈ ω → (∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5554rexlimiv 3127 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5655adantl 481 . . . . . . . . . . 11 (((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5739, 56sylbi 217 . . . . . . . . . 10 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5841a1i 11 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
59 gonafv 35310 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
6058, 59eqeq12d 2745 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
6145, 46opth 5431 . . . . . . . . . . . . . . . . 17 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
62 vex 3448 . . . . . . . . . . . . . . . . . . . 20 𝑎 ∈ V
63 vex 3448 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
6462, 63opth 5431 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
65 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
6665equcomd 2019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑢 = 𝑎)
6766eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
6968equcomd 2019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑣 = 𝑏)
7069eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑣 ∈ (Fmla‘∅) ↔ 𝑏 ∈ (Fmla‘∅)))
7167, 70anbi12d 632 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7264, 71sylbi 217 . . . . . . . . . . . . . . . . . 18 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7372adantl 481 . . . . . . . . . . . . . . . . 17 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7461, 73sylbi 217 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
75 fmlasssuc 35349 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
7632, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
7776sseli 3939 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
7876sseli 3939 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fmla‘∅) → 𝑏 ∈ (Fmla‘suc ∅))
7977, 78anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8074, 79biimtrdi 253 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8180com12 32 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8260, 81sylbid 240 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8382rexlimdva 3134 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
84 gonanegoal 35312 . . . . . . . . . . . . . . 15 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
85 eqneqall 2936 . . . . . . . . . . . . . . 15 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8684, 85mpi 20 . . . . . . . . . . . . . 14 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8786a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8887rexlimdva 3134 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8983, 88jaod 859 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
9089rexlimiv 3127 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9157, 90jaoi 857 . . . . . . . . 9 (((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9235, 91sylbi 217 . . . . . . . 8 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
93 gonarlem 35354 . . . . . . . 8 (𝑐 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
9410, 17, 24, 31, 92, 93finds 7852 . . . . . . 7 (𝑥 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
9594adantr 480 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
96 fveq2 6840 . . . . . . . . 9 (𝑁 = suc 𝑥 → (Fmla‘𝑁) = (Fmla‘suc 𝑥))
9796eleq2d 2814 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
9896eleq2d 2814 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
9996eleq2d 2814 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑏 ∈ (Fmla‘𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
10098, 99anbi12d 632 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
10197, 100imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
102101adantl 481 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
10395, 102mpbird 257 . . . . 5 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
104103rexlimiva 3126 . . . 4 (∃𝑥 ∈ ω 𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1053, 104syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
106105impancom 451 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1072, 106mpd 15 1 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  wss 3911  c0 4292  cop 4591  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  1oc1o 8404  𝑔cgoe 35293  𝑔cgna 35294  𝑔cgol 35295  Fmlacfmla 35297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-map 8778  df-goel 35300  df-gona 35301  df-goal 35302  df-sat 35303  df-fmla 35305
This theorem is referenced by:  fmlasucdisj  35359
  Copyright terms: Public domain W3C validator