Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonar Structured version   Visualization version   GIF version

Theorem gonar 35511
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonar ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonar
Dummy variables 𝑖 𝑗 𝑥 𝑢 𝑣 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gonan0 35508 . . 3 ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7823 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑥 ∈ ω 𝑁 = suc 𝑥)
4 suceq 6382 . . . . . . . . . . 11 (𝑑 = ∅ → suc 𝑑 = suc ∅)
54fveq2d 6835 . . . . . . . . . 10 (𝑑 = ∅ → (Fmla‘suc 𝑑) = (Fmla‘suc ∅))
65eleq2d 2819 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc ∅)))
75eleq2d 2819 . . . . . . . . . 10 (𝑑 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
85eleq2d 2819 . . . . . . . . . 10 (𝑑 = ∅ → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc ∅)))
97, 8anbi12d 632 . . . . . . . . 9 (𝑑 = ∅ → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
106, 9imbi12d 344 . . . . . . . 8 (𝑑 = ∅ → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))))
11 suceq 6382 . . . . . . . . . . 11 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1211fveq2d 6835 . . . . . . . . . 10 (𝑑 = 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑐))
1312eleq2d 2819 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐)))
1412eleq2d 2819 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑐)))
1512eleq2d 2819 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑐)))
1614, 15anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))))
1713, 16imbi12d 344 . . . . . . . 8 (𝑑 = 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐)))))
18 suceq 6382 . . . . . . . . . . 11 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1918fveq2d 6835 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (Fmla‘suc 𝑑) = (Fmla‘suc suc 𝑐))
2019eleq2d 2819 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐)))
2119eleq2d 2819 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑐)))
2219eleq2d 2819 . . . . . . . . . 10 (𝑑 = suc 𝑐 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc suc 𝑐)))
2321, 22anbi12d 632 . . . . . . . . 9 (𝑑 = suc 𝑐 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐))))
2420, 23imbi12d 344 . . . . . . . 8 (𝑑 = suc 𝑐 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
25 suceq 6382 . . . . . . . . . . 11 (𝑑 = 𝑥 → suc 𝑑 = suc 𝑥)
2625fveq2d 6835 . . . . . . . . . 10 (𝑑 = 𝑥 → (Fmla‘suc 𝑑) = (Fmla‘suc 𝑥))
2726eleq2d 2819 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
2826eleq2d 2819 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑎 ∈ (Fmla‘suc 𝑑) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
2926eleq2d 2819 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑏 ∈ (Fmla‘suc 𝑑) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
3127, 30imbi12d 344 . . . . . . . 8 (𝑑 = 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑑) → (𝑎 ∈ (Fmla‘suc 𝑑) ∧ 𝑏 ∈ (Fmla‘suc 𝑑))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
32 peano1 7828 . . . . . . . . . 10 ∅ ∈ ω
33 ovex 7388 . . . . . . . . . 10 (𝑎𝑔𝑏) ∈ V
34 isfmlasuc 35504 . . . . . . . . . 10 ((∅ ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
3532, 33, 34mp2an 692 . . . . . . . . 9 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)))
36 eqeq1 2737 . . . . . . . . . . . . 13 (𝑥 = (𝑎𝑔𝑏) → (𝑥 = (𝑖𝑔𝑗) ↔ (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
37362rexbidv 3198 . . . . . . . . . . . 12 (𝑥 = (𝑎𝑔𝑏) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
38 fmla0 35498 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3937, 38elrab2 3646 . . . . . . . . . . 11 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) ↔ ((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)))
40 gonafv 35466 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
4140el2v 3444 . . . . . . . . . . . . . . . . 17 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
43 goel 35463 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
4442, 43eqeq12d 2749 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
45 1oex 8404 . . . . . . . . . . . . . . . . 17 1o ∈ V
46 opex 5409 . . . . . . . . . . . . . . . . 17 𝑎, 𝑏⟩ ∈ V
4745, 46opth 5421 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩))
48 1n0 8412 . . . . . . . . . . . . . . . . . 18 1o ≠ ∅
49 eqneqall 2940 . . . . . . . . . . . . . . . . . 18 (1o = ∅ → (1o ≠ ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5048, 49mpi 20 . . . . . . . . . . . . . . . . 17 (1o = ∅ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((1o = ∅ ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑗⟩) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5247, 51sylbi 217 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5344, 52biimtrdi 253 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5453rexlimdva 3134 . . . . . . . . . . . . 13 (𝑖 ∈ ω → (∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
5554rexlimiv 3127 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5655adantl 481 . . . . . . . . . . 11 (((𝑎𝑔𝑏) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑎𝑔𝑏) = (𝑖𝑔𝑗)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5739, 56sylbi 217 . . . . . . . . . 10 ((𝑎𝑔𝑏) ∈ (Fmla‘∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
5841a1i 11 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
59 gonafv 35466 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
6058, 59eqeq12d 2749 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
6145, 46opth 5421 . . . . . . . . . . . . . . . . 17 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
62 vex 3441 . . . . . . . . . . . . . . . . . . . 20 𝑎 ∈ V
63 vex 3441 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
6462, 63opth 5421 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
65 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
6665equcomd 2020 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑢 = 𝑎)
6766eleq1d 2818 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
6968equcomd 2020 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑣 = 𝑏)
7069eleq1d 2818 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑣 ∈ (Fmla‘∅) ↔ 𝑏 ∈ (Fmla‘∅)))
7167, 70anbi12d 632 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7264, 71sylbi 217 . . . . . . . . . . . . . . . . . 18 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7372adantl 481 . . . . . . . . . . . . . . . . 17 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
7461, 73sylbi 217 . . . . . . . . . . . . . . . 16 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) ↔ (𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅))))
75 fmlasssuc 35505 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
7632, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
7776sseli 3926 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
7876sseli 3926 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fmla‘∅) → 𝑏 ∈ (Fmla‘suc ∅))
7977, 78anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (Fmla‘∅) ∧ 𝑏 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8074, 79biimtrdi 253 . . . . . . . . . . . . . . 15 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8180com12 32 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8260, 81sylbid 240 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8382rexlimdva 3134 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
84 gonanegoal 35468 . . . . . . . . . . . . . . 15 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
85 eqneqall 2940 . . . . . . . . . . . . . . 15 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8684, 85mpi 20 . . . . . . . . . . . . . 14 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
8786a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8887rexlimdva 3134 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
8983, 88jaod 859 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅))))
9089rexlimiv 3127 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9157, 90jaoi 857 . . . . . . . . 9 (((𝑎𝑔𝑏) ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
9235, 91sylbi 217 . . . . . . . 8 ((𝑎𝑔𝑏) ∈ (Fmla‘suc ∅) → (𝑎 ∈ (Fmla‘suc ∅) ∧ 𝑏 ∈ (Fmla‘suc ∅)))
93 gonarlem 35510 . . . . . . . 8 (𝑐 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑐) → (𝑎 ∈ (Fmla‘suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc 𝑐))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑐) → (𝑎 ∈ (Fmla‘suc suc 𝑐) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑐)))))
9410, 17, 24, 31, 92, 93finds 7835 . . . . . . 7 (𝑥 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
9594adantr 480 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
96 fveq2 6831 . . . . . . . . 9 (𝑁 = suc 𝑥 → (Fmla‘𝑁) = (Fmla‘suc 𝑥))
9796eleq2d 2819 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) ↔ (𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥)))
9896eleq2d 2819 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑥)))
9996eleq2d 2819 . . . . . . . . 9 (𝑁 = suc 𝑥 → (𝑏 ∈ (Fmla‘𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑥)))
10098, 99anbi12d 632 . . . . . . . 8 (𝑁 = suc 𝑥 → ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥))))
10197, 100imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑥 → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
102101adantl 481 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → (((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑥) → (𝑎 ∈ (Fmla‘suc 𝑥) ∧ 𝑏 ∈ (Fmla‘suc 𝑥)))))
10395, 102mpbird 257 . . . . 5 ((𝑥 ∈ ω ∧ 𝑁 = suc 𝑥) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
104103rexlimiva 3126 . . . 4 (∃𝑥 ∈ ω 𝑁 = suc 𝑥 → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1053, 104syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑎𝑔𝑏) ∈ (Fmla‘𝑁) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
106105impancom 451 . 2 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))))
1072, 106mpd 15 1 ((𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  wss 3898  c0 4282  cop 4583  suc csuc 6316  cfv 6489  (class class class)co 7355  ωcom 7805  1oc1o 8387  𝑔cgoe 35449  𝑔cgna 35450  𝑔cgol 35451  Fmlacfmla 35453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-map 8761  df-goel 35456  df-gona 35457  df-goal 35458  df-sat 35459  df-fmla 35461
This theorem is referenced by:  fmlasucdisj  35515
  Copyright terms: Public domain W3C validator