| Step | Hyp | Ref
| Expression |
| 1 | | relxp 5703 |
. . . . . . . . 9
⊢ Rel
({𝑗} × 𝐵) |
| 2 | 1 | rgenw 3065 |
. . . . . . . 8
⊢
∀𝑗 ∈
𝐴 Rel ({𝑗} × 𝐵) |
| 3 | | reliun 5826 |
. . . . . . . 8
⊢ (Rel
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∀𝑗 ∈ 𝐴 Rel ({𝑗} × 𝐵)) |
| 4 | 2, 3 | mpbir 231 |
. . . . . . 7
⊢ Rel
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| 5 | | relcnv 6122 |
. . . . . . 7
⊢ Rel ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) |
| 6 | | ancom 460 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑗 ∧ 𝑦 = 𝑘) ↔ (𝑦 = 𝑘 ∧ 𝑥 = 𝑗)) |
| 7 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 8 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 9 | 7, 8 | opth 5481 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑦〉 = 〈𝑗, 𝑘〉 ↔ (𝑥 = 𝑗 ∧ 𝑦 = 𝑘)) |
| 10 | 8, 7 | opth 5481 |
. . . . . . . . . . . 12
⊢
(〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ↔ (𝑦 = 𝑘 ∧ 𝑥 = 𝑗)) |
| 11 | 6, 9, 10 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 = 〈𝑗, 𝑘〉 ↔ 〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉) |
| 12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑥, 𝑦〉 = 〈𝑗, 𝑘〉 ↔ 〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉)) |
| 13 | | fprodcom2.4 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) |
| 14 | 12, 13 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝜑 → ((〈𝑥, 𝑦〉 = 〈𝑗, 𝑘〉 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) ↔ (〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷)))) |
| 15 | 14 | 2exbidv 1924 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑗∃𝑘(〈𝑥, 𝑦〉 = 〈𝑗, 𝑘〉 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) ↔ ∃𝑗∃𝑘(〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷)))) |
| 16 | | eliunxp 5848 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗∃𝑘(〈𝑥, 𝑦〉 = 〈𝑗, 𝑘〉 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵))) |
| 17 | 7, 8 | opelcnv 5892 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) ↔ 〈𝑦, 𝑥〉 ∈ ∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷)) |
| 18 | | eliunxp 5848 |
. . . . . . . . 9
⊢
(〈𝑦, 𝑥〉 ∈ ∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) ↔ ∃𝑘∃𝑗(〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) |
| 19 | | excom 2162 |
. . . . . . . . 9
⊢
(∃𝑘∃𝑗(〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷)) ↔ ∃𝑗∃𝑘(〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) |
| 20 | 17, 18, 19 | 3bitri 297 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) ↔ ∃𝑗∃𝑘(〈𝑦, 𝑥〉 = 〈𝑘, 𝑗〉 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) |
| 21 | 15, 16, 20 | 3bitr4g 314 |
. . . . . . 7
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷))) |
| 22 | 4, 5, 21 | eqrelrdv 5802 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷)) |
| 23 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑥({𝑗} × 𝐵) |
| 24 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑗{𝑥} |
| 25 | | nfcsb1v 3923 |
. . . . . . . 8
⊢
Ⅎ𝑗⦋𝑥 / 𝑗⦌𝐵 |
| 26 | 24, 25 | nfxp 5718 |
. . . . . . 7
⊢
Ⅎ𝑗({𝑥} × ⦋𝑥 / 𝑗⦌𝐵) |
| 27 | | sneq 4636 |
. . . . . . . 8
⊢ (𝑗 = 𝑥 → {𝑗} = {𝑥}) |
| 28 | | csbeq1a 3913 |
. . . . . . . 8
⊢ (𝑗 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑗⦌𝐵) |
| 29 | 27, 28 | xpeq12d 5716 |
. . . . . . 7
⊢ (𝑗 = 𝑥 → ({𝑗} × 𝐵) = ({𝑥} × ⦋𝑥 / 𝑗⦌𝐵)) |
| 30 | 23, 26, 29 | cbviun 5036 |
. . . . . 6
⊢ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = ∪
𝑥 ∈ 𝐴 ({𝑥} × ⦋𝑥 / 𝑗⦌𝐵) |
| 31 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑦({𝑘} × 𝐷) |
| 32 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑘{𝑦} |
| 33 | | nfcsb1v 3923 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐷 |
| 34 | 32, 33 | nfxp 5718 |
. . . . . . . 8
⊢
Ⅎ𝑘({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) |
| 35 | | sneq 4636 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → {𝑘} = {𝑦}) |
| 36 | | csbeq1a 3913 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑘⦌𝐷) |
| 37 | 35, 36 | xpeq12d 5716 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → ({𝑘} × 𝐷) = ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 38 | 31, 34, 37 | cbviun 5036 |
. . . . . . 7
⊢ ∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) = ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) |
| 39 | 38 | cnveqi 5885 |
. . . . . 6
⊢ ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) = ◡∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) |
| 40 | 22, 30, 39 | 3eqtr3g 2800 |
. . . . 5
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 ({𝑥} × ⦋𝑥 / 𝑗⦌𝐵) = ◡∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 41 | 40 | prodeq1d 15956 |
. . . 4
⊢ (𝜑 → ∏𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × ⦋𝑥 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸 = ∏𝑧 ∈ ◡ ∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)⦋(2nd ‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸) |
| 42 | 8, 7 | op1std 8024 |
. . . . . . 7
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (1st ‘𝑤) = 𝑦) |
| 43 | 42 | csbeq1d 3903 |
. . . . . 6
⊢ (𝑤 = 〈𝑦, 𝑥〉 → ⦋(1st
‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸) |
| 44 | 8, 7 | op2ndd 8025 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (2nd ‘𝑤) = 𝑥) |
| 45 | 44 | csbeq1d 3903 |
. . . . . . 7
⊢ (𝑤 = 〈𝑦, 𝑥〉 → ⦋(2nd
‘𝑤) / 𝑗⦌𝐸 = ⦋𝑥 / 𝑗⦌𝐸) |
| 46 | 45 | csbeq2dv 3906 |
. . . . . 6
⊢ (𝑤 = 〈𝑦, 𝑥〉 → ⦋𝑦 / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 47 | 43, 46 | eqtrd 2777 |
. . . . 5
⊢ (𝑤 = 〈𝑦, 𝑥〉 → ⦋(1st
‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 48 | 7, 8 | op2ndd 8025 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 49 | 48 | csbeq1d 3903 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋(2nd
‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸) |
| 50 | 7, 8 | op1std 8024 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 51 | 50 | csbeq1d 3903 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋(1st
‘𝑧) / 𝑗⦌𝐸 = ⦋𝑥 / 𝑗⦌𝐸) |
| 52 | 51 | csbeq2dv 3906 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋𝑦 / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 53 | 49, 52 | eqtrd 2777 |
. . . . 5
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋(2nd
‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 54 | | fprodcom2.2 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Fin) |
| 55 | | snfi 9083 |
. . . . . . . 8
⊢ {𝑦} ∈ Fin |
| 56 | | fprodcom2.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ Fin) |
| 58 | 33, 36 | opeliunxp2f 8235 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑦, 𝑥〉 ∈ ∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) |
| 59 | 17, 58 | sylbbr 236 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷) → 〈𝑥, 𝑦〉 ∈ ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷)) |
| 60 | 59 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → 〈𝑥, 𝑦〉 ∈ ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷)) |
| 61 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = ◡∪ 𝑘 ∈ 𝐶 ({𝑘} × 𝐷)) |
| 62 | 60, 61 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → 〈𝑥, 𝑦〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 63 | | eliun 4995 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑦〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝐴 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) |
| 64 | 62, 63 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → ∃𝑗 ∈ 𝐴 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) |
| 65 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) → 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) |
| 66 | | opelxp 5721 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵) ↔ (𝑥 ∈ {𝑗} ∧ 𝑦 ∈ 𝐵)) |
| 67 | 65, 66 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) → (𝑥 ∈ {𝑗} ∧ 𝑦 ∈ 𝐵)) |
| 68 | 67 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) → 𝑥 ∈ {𝑗}) |
| 69 | | elsni 4643 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑗} → 𝑥 = 𝑗) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) → 𝑥 = 𝑗) |
| 71 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) → 𝑗 ∈ 𝐴) |
| 72 | 70, 71 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵)) → 𝑥 ∈ 𝐴) |
| 73 | 72 | rexlimiva 3147 |
. . . . . . . . . . . 12
⊢
(∃𝑗 ∈
𝐴 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵) → 𝑥 ∈ 𝐴) |
| 74 | 64, 73 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → 𝑥 ∈ 𝐴) |
| 75 | 74 | expr 456 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷 → 𝑥 ∈ 𝐴)) |
| 76 | 75 | ssrdv 3989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ⦋𝑦 / 𝑘⦌𝐷 ⊆ 𝐴) |
| 77 | 57, 76 | ssfid 9301 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ⦋𝑦 / 𝑘⦌𝐷 ∈ Fin) |
| 78 | | xpfi 9358 |
. . . . . . . 8
⊢ (({𝑦} ∈ Fin ∧
⦋𝑦 / 𝑘⦌𝐷 ∈ Fin) → ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ∈ Fin) |
| 79 | 55, 77, 78 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ∈ Fin) |
| 80 | 79 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ∈ Fin) |
| 81 | | iunfi 9383 |
. . . . . 6
⊢ ((𝐶 ∈ Fin ∧ ∀𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ∈ Fin) → ∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ∈ Fin) |
| 82 | 54, 80, 81 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ∈ Fin) |
| 83 | | reliun 5826 |
. . . . . . 7
⊢ (Rel
∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ↔ ∀𝑦 ∈ 𝐶 Rel ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 84 | | relxp 5703 |
. . . . . . . 8
⊢ Rel
({𝑦} ×
⦋𝑦 / 𝑘⦌𝐷) |
| 85 | 84 | a1i 11 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → Rel ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 86 | 83, 85 | mprgbir 3068 |
. . . . . 6
⊢ Rel
∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) |
| 87 | 86 | a1i 11 |
. . . . 5
⊢ (𝜑 → Rel ∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 88 | | csbeq1 3902 |
. . . . . . . 8
⊢ (𝑥 = (2nd ‘𝑤) → ⦋𝑥 / 𝑗⦌𝐸 = ⦋(2nd
‘𝑤) / 𝑗⦌𝐸) |
| 89 | 88 | csbeq2dv 3906 |
. . . . . . 7
⊢ (𝑥 = (2nd ‘𝑤) →
⦋(1st ‘𝑤) / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 = ⦋(1st
‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸) |
| 90 | 89 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = (2nd ‘𝑤) →
(⦋(1st ‘𝑤) / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ ↔
⦋(1st ‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸 ∈ ℂ)) |
| 91 | | csbeq1 3902 |
. . . . . . . 8
⊢ (𝑦 = (1st ‘𝑤) → ⦋𝑦 / 𝑘⦌𝐷 = ⦋(1st
‘𝑤) / 𝑘⦌𝐷) |
| 92 | | csbeq1 3902 |
. . . . . . . . 9
⊢ (𝑦 = (1st ‘𝑤) → ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 = ⦋(1st
‘𝑤) / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 93 | 92 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑦 = (1st ‘𝑤) → (⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ ↔
⦋(1st ‘𝑤) / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 94 | 91, 93 | raleqbidv 3346 |
. . . . . . 7
⊢ (𝑦 = (1st ‘𝑤) → (∀𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ ↔ ∀𝑥 ∈ ⦋
(1st ‘𝑤) /
𝑘⦌𝐷⦋(1st
‘𝑤) / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 95 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → 𝜑) |
| 96 | 25 | nfcri 2897 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵 |
| 97 | 69 | equcomd 2018 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑗} → 𝑗 = 𝑥) |
| 98 | 97, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑗} → 𝐵 = ⦋𝑥 / 𝑗⦌𝐵) |
| 99 | 98 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑗} → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵)) |
| 100 | 99 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ {𝑗} ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵) |
| 101 | 66, 100 | sylbi 217 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵) → 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵) |
| 102 | 101 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵) → 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵)) |
| 103 | 96, 102 | rexlimi 3259 |
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
𝐴 〈𝑥, 𝑦〉 ∈ ({𝑗} × 𝐵) → 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵) |
| 104 | 64, 103 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵) |
| 105 | | fprodcom2.5 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ) |
| 106 | 105 | ralrimivva 3202 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐸 ∈ ℂ) |
| 107 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗⦋𝑥 / 𝑗⦌𝐸 |
| 108 | 107 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ |
| 109 | 25, 108 | nfralw 3311 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗∀𝑘 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ |
| 110 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑥 → 𝐸 = ⦋𝑥 / 𝑗⦌𝐸) |
| 111 | 110 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑥 → (𝐸 ∈ ℂ ↔ ⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 112 | 28, 111 | raleqbidv 3346 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑥 → (∀𝑘 ∈ 𝐵 𝐸 ∈ ℂ ↔ ∀𝑘 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 113 | 109, 112 | rspc 3610 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐸 ∈ ℂ → ∀𝑘 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 114 | 106, 113 | mpan9 506 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ) |
| 115 | | nfcsb1v 3923 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 |
| 116 | 115 | nfel1 2922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ |
| 117 | | csbeq1a 3913 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑦 → ⦋𝑥 / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 118 | 117 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → (⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 119 | 116, 118 | rspc 3610 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵 → (∀𝑘 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ → ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 120 | 114, 119 | syl5com 31 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵 → ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ)) |
| 121 | 120 | impr 454 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ⦋𝑥 / 𝑗⦌𝐵)) → ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ) |
| 122 | 95, 74, 104, 121 | syl12anc 837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋𝑦 / 𝑘⦌𝐷)) → ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ) |
| 123 | 122 | ralrimivva 3202 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∀𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ) |
| 124 | 123 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → ∀𝑦 ∈ 𝐶 ∀𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ) |
| 125 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 126 | | eliun 4995 |
. . . . . . . . 9
⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) ↔ ∃𝑦 ∈ 𝐶 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 127 | 125, 126 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → ∃𝑦 ∈ 𝐶 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) |
| 128 | | xp1st 8046 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) → (1st ‘𝑤) ∈ {𝑦}) |
| 129 | 128 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (1st ‘𝑤) ∈ {𝑦}) |
| 130 | | elsni 4643 |
. . . . . . . . . . 11
⊢
((1st ‘𝑤) ∈ {𝑦} → (1st ‘𝑤) = 𝑦) |
| 131 | 129, 130 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (1st ‘𝑤) = 𝑦) |
| 132 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → 𝑦 ∈ 𝐶) |
| 133 | 131, 132 | eqeltrd 2841 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (1st ‘𝑤) ∈ 𝐶) |
| 134 | 133 | rexlimiva 3147 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐶 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) → (1st ‘𝑤) ∈ 𝐶) |
| 135 | 127, 134 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (1st ‘𝑤) ∈ 𝐶) |
| 136 | 94, 124, 135 | rspcdva 3623 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → ∀𝑥 ∈ ⦋ (1st
‘𝑤) / 𝑘⦌𝐷⦋(1st ‘𝑤) / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 ∈ ℂ) |
| 137 | | xp2nd 8047 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) → (2nd ‘𝑤) ∈ ⦋𝑦 / 𝑘⦌𝐷) |
| 138 | 137 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (2nd ‘𝑤) ∈ ⦋𝑦 / 𝑘⦌𝐷) |
| 139 | 131 | csbeq1d 3903 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → ⦋(1st
‘𝑤) / 𝑘⦌𝐷 = ⦋𝑦 / 𝑘⦌𝐷) |
| 140 | 138, 139 | eleqtrrd 2844 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (2nd ‘𝑤) ∈
⦋(1st ‘𝑤) / 𝑘⦌𝐷) |
| 141 | 140 | rexlimiva 3147 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐶 𝑤 ∈ ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷) → (2nd ‘𝑤) ∈
⦋(1st ‘𝑤) / 𝑘⦌𝐷) |
| 142 | 127, 141 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → (2nd ‘𝑤) ∈
⦋(1st ‘𝑤) / 𝑘⦌𝐷) |
| 143 | 90, 136, 142 | rspcdva 3623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)) → ⦋(1st
‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸 ∈ ℂ) |
| 144 | 47, 53, 82, 87, 143 | fprodcnv 16019 |
. . . 4
⊢ (𝜑 → ∏𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)⦋(1st ‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸 = ∏𝑧 ∈ ◡ ∪ 𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)⦋(2nd ‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸) |
| 145 | 41, 144 | eqtr4d 2780 |
. . 3
⊢ (𝜑 → ∏𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × ⦋𝑥 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸 = ∏𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)⦋(1st ‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸) |
| 146 | | fprodcom2.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) |
| 147 | 146 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 𝐵 ∈ Fin) |
| 148 | 25 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑗⦋𝑥 / 𝑗⦌𝐵 ∈ Fin |
| 149 | 28 | eleq1d 2826 |
. . . . . 6
⊢ (𝑗 = 𝑥 → (𝐵 ∈ Fin ↔ ⦋𝑥 / 𝑗⦌𝐵 ∈ Fin)) |
| 150 | 148, 149 | rspc 3610 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋𝑥 / 𝑗⦌𝐵 ∈ Fin)) |
| 151 | 147, 150 | mpan9 506 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ⦋𝑥 / 𝑗⦌𝐵 ∈ Fin) |
| 152 | 53, 56, 151, 121 | fprod2d 16017 |
. . 3
⊢ (𝜑 → ∏𝑥 ∈ 𝐴 ∏𝑦 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 = ∏𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × ⦋𝑥 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋(1st
‘𝑧) / 𝑗⦌𝐸) |
| 153 | 47, 54, 77, 122 | fprod2d 16017 |
. . 3
⊢ (𝜑 → ∏𝑦 ∈ 𝐶 ∏𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 = ∏𝑤 ∈ ∪
𝑦 ∈ 𝐶 ({𝑦} × ⦋𝑦 / 𝑘⦌𝐷)⦋(1st ‘𝑤) / 𝑘⦌⦋(2nd
‘𝑤) / 𝑗⦌𝐸) |
| 154 | 145, 152,
153 | 3eqtr4d 2787 |
. 2
⊢ (𝜑 → ∏𝑥 ∈ 𝐴 ∏𝑦 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 = ∏𝑦 ∈ 𝐶 ∏𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 155 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑥∏𝑘 ∈ 𝐵 𝐸 |
| 156 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑗𝑦 |
| 157 | 156, 107 | nfcsbw 3925 |
. . . 4
⊢
Ⅎ𝑗⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 |
| 158 | 25, 157 | nfcprod 15945 |
. . 3
⊢
Ⅎ𝑗∏𝑦 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 |
| 159 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑦𝐸 |
| 160 | | nfcsb1v 3923 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐸 |
| 161 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑘 = 𝑦 → 𝐸 = ⦋𝑦 / 𝑘⦌𝐸) |
| 162 | 159, 160,
161 | cbvprodi 15951 |
. . . 4
⊢
∏𝑘 ∈
𝐵 𝐸 = ∏𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐸 |
| 163 | 110 | csbeq2dv 3906 |
. . . . . 6
⊢ (𝑗 = 𝑥 → ⦋𝑦 / 𝑘⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 164 | 163 | adantr 480 |
. . . . 5
⊢ ((𝑗 = 𝑥 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 165 | 28, 164 | prodeq12dv 15962 |
. . . 4
⊢ (𝑗 = 𝑥 → ∏𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐸 = ∏𝑦 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 166 | 162, 165 | eqtrid 2789 |
. . 3
⊢ (𝑗 = 𝑥 → ∏𝑘 ∈ 𝐵 𝐸 = ∏𝑦 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 167 | 155, 158,
166 | cbvprodi 15951 |
. 2
⊢
∏𝑗 ∈
𝐴 ∏𝑘 ∈ 𝐵 𝐸 = ∏𝑥 ∈ 𝐴 ∏𝑦 ∈ ⦋ 𝑥 / 𝑗⦌𝐵⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 |
| 168 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑦∏𝑗 ∈ 𝐷 𝐸 |
| 169 | 33, 115 | nfcprod 15945 |
. . 3
⊢
Ⅎ𝑘∏𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 |
| 170 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑥𝐸 |
| 171 | 170, 107,
110 | cbvprodi 15951 |
. . . 4
⊢
∏𝑗 ∈
𝐷 𝐸 = ∏𝑥 ∈ 𝐷 ⦋𝑥 / 𝑗⦌𝐸 |
| 172 | 117 | adantr 480 |
. . . . 5
⊢ ((𝑘 = 𝑦 ∧ 𝑥 ∈ 𝐷) → ⦋𝑥 / 𝑗⦌𝐸 = ⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 173 | 36, 172 | prodeq12dv 15962 |
. . . 4
⊢ (𝑘 = 𝑦 → ∏𝑥 ∈ 𝐷 ⦋𝑥 / 𝑗⦌𝐸 = ∏𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 174 | 171, 173 | eqtrid 2789 |
. . 3
⊢ (𝑘 = 𝑦 → ∏𝑗 ∈ 𝐷 𝐸 = ∏𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸) |
| 175 | 168, 169,
174 | cbvprodi 15951 |
. 2
⊢
∏𝑘 ∈
𝐶 ∏𝑗 ∈ 𝐷 𝐸 = ∏𝑦 ∈ 𝐶 ∏𝑥 ∈ ⦋ 𝑦 / 𝑘⦌𝐷⦋𝑦 / 𝑘⦌⦋𝑥 / 𝑗⦌𝐸 |
| 176 | 154, 167,
175 | 3eqtr4g 2802 |
1
⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐸 = ∏𝑘 ∈ 𝐶 ∏𝑗 ∈ 𝐷 𝐸) |