![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
Ref | Expression |
---|---|
esumeq2 | ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
2 | mpteq12 5258 | . . . . 5 ⊢ ((𝐴 = 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
3 | 1, 2 | mpan 689 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
4 | 3 | oveq2d 7464 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
5 | 4 | unieqd 4944 | . 2 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
6 | df-esum 33992 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
7 | df-esum 33992 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
8 | 5, 6, 7 | 3eqtr4g 2805 | 1 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∀wral 3067 ∪ cuni 4931 ↦ cmpt 5249 (class class class)co 7448 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 ↾s cress 17287 ℝ*𝑠cxrs 17560 tsums ctsu 24155 Σ*cesum 33991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 df-ov 7451 df-esum 33992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |