| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| esumeq2 | ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
| 2 | mpteq12 5177 | . . . . 5 ⊢ ((𝐴 = 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 4 | 3 | oveq2d 7362 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
| 5 | 4 | unieqd 4869 | . 2 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
| 6 | df-esum 34041 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 7 | df-esum 34041 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
| 8 | 5, 6, 7 | 3eqtr4g 2791 | 1 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3047 ∪ cuni 4856 ↦ cmpt 5170 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 [,]cicc 13248 ↾s cress 17141 ℝ*𝑠cxrs 17404 tsums ctsu 24041 Σ*cesum 34040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-iota 6437 df-fv 6489 df-ov 7349 df-esum 34041 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |