Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2 Structured version   Visualization version   GIF version

Theorem esumeq2 34000
Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.)
Assertion
Ref Expression
esumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2
StepHypRef Expression
1 eqid 2740 . . . . 5 𝐴 = 𝐴
2 mpteq12 5258 . . . . 5 ((𝐴 = 𝐴 ∧ ∀𝑘𝐴 𝐵 = 𝐶) → (𝑘𝐴𝐵) = (𝑘𝐴𝐶))
31, 2mpan 689 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (𝑘𝐴𝐵) = (𝑘𝐴𝐶))
43oveq2d 7464 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
54unieqd 4944 . 2 (∀𝑘𝐴 𝐵 = 𝐶 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
6 df-esum 33992 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
7 df-esum 33992 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
85, 6, 73eqtr4g 2805 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wral 3067   cuni 4931  cmpt 5249  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,]cicc 13410  s cress 17287  *𝑠cxrs 17560   tsums ctsu 24155  Σ*cesum 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-iota 6525  df-fv 6581  df-ov 7451  df-esum 33992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator