Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
Ref | Expression |
---|---|
esumeq2 | ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
2 | mpteq12 5162 | . . . . 5 ⊢ ((𝐴 = 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
3 | 1, 2 | mpan 686 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
4 | 3 | oveq2d 7271 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
5 | 4 | unieqd 4850 | . 2 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
6 | df-esum 31896 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
7 | df-esum 31896 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
8 | 5, 6, 7 | 3eqtr4g 2804 | 1 ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∀wral 3063 ∪ cuni 4836 ↦ cmpt 5153 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 ↾s cress 16867 ℝ*𝑠cxrs 17128 tsums ctsu 23185 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-iota 6376 df-fv 6426 df-ov 7258 df-esum 31896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |