Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2 Structured version   Visualization version   GIF version

Theorem esumeq2 32004
Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.)
Assertion
Ref Expression
esumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2
StepHypRef Expression
1 eqid 2738 . . . . 5 𝐴 = 𝐴
2 mpteq12 5166 . . . . 5 ((𝐴 = 𝐴 ∧ ∀𝑘𝐴 𝐵 = 𝐶) → (𝑘𝐴𝐵) = (𝑘𝐴𝐶))
31, 2mpan 687 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (𝑘𝐴𝐵) = (𝑘𝐴𝐶))
43oveq2d 7291 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
54unieqd 4853 . 2 (∀𝑘𝐴 𝐵 = 𝐶 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
6 df-esum 31996 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
7 df-esum 31996 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
85, 6, 73eqtr4g 2803 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wral 3064   cuni 4839  cmpt 5157  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  s cress 16941  *𝑠cxrs 17211   tsums ctsu 23277  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-iota 6391  df-fv 6441  df-ov 7278  df-esum 31996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator