Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2 Structured version   Visualization version   GIF version

Theorem esumeq2 31904
Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.)
Assertion
Ref Expression
esumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2
StepHypRef Expression
1 eqid 2738 . . . . 5 𝐴 = 𝐴
2 mpteq12 5162 . . . . 5 ((𝐴 = 𝐴 ∧ ∀𝑘𝐴 𝐵 = 𝐶) → (𝑘𝐴𝐵) = (𝑘𝐴𝐶))
31, 2mpan 686 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (𝑘𝐴𝐵) = (𝑘𝐴𝐶))
43oveq2d 7271 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
54unieqd 4850 . 2 (∀𝑘𝐴 𝐵 = 𝐶 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
6 df-esum 31896 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
7 df-esum 31896 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
85, 6, 73eqtr4g 2804 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wral 3063   cuni 4836  cmpt 5153  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  s cress 16867  *𝑠cxrs 17128   tsums ctsu 23185  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-iota 6376  df-fv 6426  df-ov 7258  df-esum 31896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator