Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2d Structured version   Visualization version   GIF version

Theorem esumeq2d 33689
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.)
Hypotheses
Ref Expression
esumeq2d.0 𝑘𝜑
esumeq2d.1 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2d (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)

Proof of Theorem esumeq2d
StepHypRef Expression
1 esumeq2d.0 . 2 𝑘𝜑
2 eqidd 2729 . 2 (𝜑𝐴 = 𝐴)
3 esumeq2d.1 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
43r19.21bi 3246 . 2 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
51, 2, 4esumeq12dvaf 33683 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wnf 1777  wral 3058  Σ*cesum 33679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-iota 6505  df-fv 6561  df-ov 7429  df-esum 33680
This theorem is referenced by:  esumeq2dv  33690  esumpad  33707  esumlef  33714  esumrnmpt2  33720  voliune  33881  omssubadd  33953  carsggect  33971  omsmeas  33976  dstrvprob  34124
  Copyright terms: Public domain W3C validator