Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2d Structured version   Visualization version   GIF version

Theorem esumeq2d 34034
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.)
Hypotheses
Ref Expression
esumeq2d.0 𝑘𝜑
esumeq2d.1 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2d (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)

Proof of Theorem esumeq2d
StepHypRef Expression
1 esumeq2d.0 . 2 𝑘𝜑
2 eqidd 2731 . 2 (𝜑𝐴 = 𝐴)
3 esumeq2d.1 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
43r19.21bi 3230 . 2 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
51, 2, 4esumeq12dvaf 34028 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnf 1783  wral 3045  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-iota 6467  df-fv 6522  df-ov 7393  df-esum 34025
This theorem is referenced by:  esumeq2dv  34035  esumpad  34052  esumlef  34059  esumrnmpt2  34065  voliune  34226  omssubadd  34298  carsggect  34316  omsmeas  34321  dstrvprob  34470
  Copyright terms: Public domain W3C validator