Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2d Structured version   Visualization version   GIF version

Theorem esumeq2d 31905
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.)
Hypotheses
Ref Expression
esumeq2d.0 𝑘𝜑
esumeq2d.1 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2d (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)

Proof of Theorem esumeq2d
StepHypRef Expression
1 esumeq2d.0 . 2 𝑘𝜑
2 eqidd 2739 . 2 (𝜑𝐴 = 𝐴)
3 esumeq2d.1 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
43r19.21bi 3132 . 2 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
51, 2, 4esumeq12dvaf 31899 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnf 1787  wral 3063  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-iota 6376  df-fv 6426  df-ov 7258  df-esum 31896
This theorem is referenced by:  esumeq2dv  31906  esumpad  31923  esumlef  31930  esumrnmpt2  31936  voliune  32097  omssubadd  32167  carsggect  32185  omsmeas  32190  dstrvprob  32338
  Copyright terms: Public domain W3C validator