Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
Ref | Expression |
---|---|
esumeq2d.0 | ⊢ Ⅎ𝑘𝜑 |
esumeq2d.1 | ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
Ref | Expression |
---|---|
esumeq2d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq2d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | eqidd 2739 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
3 | esumeq2d.1 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) | |
4 | 3 | r19.21bi 3132 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
5 | 1, 2, 4 | esumeq12dvaf 31899 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1787 ∀wral 3063 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-iota 6376 df-fv 6426 df-ov 7258 df-esum 31896 |
This theorem is referenced by: esumeq2dv 31906 esumpad 31923 esumlef 31930 esumrnmpt2 31936 voliune 32097 omssubadd 32167 carsggect 32185 omsmeas 32190 dstrvprob 32338 |
Copyright terms: Public domain | W3C validator |