Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
Ref | Expression |
---|---|
esumeq2d.0 | ⊢ Ⅎ𝑘𝜑 |
esumeq2d.1 | ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
Ref | Expression |
---|---|
esumeq2d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq2d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | eqidd 2740 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
3 | esumeq2d.1 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) | |
4 | 3 | r19.21bi 3134 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
5 | 1, 2, 4 | esumeq12dvaf 31978 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Ⅎwnf 1789 ∀wral 3065 Σ*cesum 31974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-iota 6388 df-fv 6438 df-ov 7271 df-esum 31975 |
This theorem is referenced by: esumeq2dv 31985 esumpad 32002 esumlef 32009 esumrnmpt2 32015 voliune 32176 omssubadd 32246 carsggect 32264 omsmeas 32269 dstrvprob 32417 |
Copyright terms: Public domain | W3C validator |