| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
| Ref | Expression |
|---|---|
| esumeq2d.0 | ⊢ Ⅎ𝑘𝜑 |
| esumeq2d.1 | ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| esumeq2d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq2d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | eqidd 2732 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 3 | esumeq2d.1 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) | |
| 4 | 3 | r19.21bi 3224 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| 5 | 1, 2, 4 | esumeq12dvaf 34044 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnf 1784 ∀wral 3047 Σ*cesum 34040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-iota 6437 df-fv 6489 df-ov 7349 df-esum 34041 |
| This theorem is referenced by: esumeq2dv 34051 esumpad 34068 esumlef 34075 esumrnmpt2 34081 voliune 34242 omssubadd 34313 carsggect 34331 omsmeas 34336 dstrvprob 34485 |
| Copyright terms: Public domain | W3C validator |