Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq1d Structured version   Visualization version   GIF version

Theorem esumeq1d 34036
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypotheses
Ref Expression
esumeq1d.0 𝑘𝜑
esumeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
esumeq1d (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)

Proof of Theorem esumeq1d
StepHypRef Expression
1 esumeq1d.0 . 2 𝑘𝜑
2 esumeq1d.1 . 2 (𝜑𝐴 = 𝐵)
3 eqidd 2738 . 2 ((𝜑𝑘𝐴) → 𝐶 = 𝐶)
41, 2, 3esumeq12dvaf 34032 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  Σ*cesum 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-iota 6514  df-fv 6569  df-ov 7434  df-esum 34029
This theorem is referenced by:  esummono  34055  esumrnmpt2  34069  esumfzf  34070  hasheuni  34086  esum2dlem  34093  measvuni  34215  ddemeas  34237  omssubadd  34302  carsggect  34320
  Copyright terms: Public domain W3C validator