| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| esumeq1d.0 | ⊢ Ⅎ𝑘𝜑 |
| esumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| esumeq1d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq1d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | esumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eqidd 2737 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | esumeq12dvaf 34067 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Σ*cesum 34063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-iota 6489 df-fv 6544 df-ov 7413 df-esum 34064 |
| This theorem is referenced by: esummono 34090 esumrnmpt2 34104 esumfzf 34105 hasheuni 34121 esum2dlem 34128 measvuni 34250 ddemeas 34272 omssubadd 34337 carsggect 34355 |
| Copyright terms: Public domain | W3C validator |