Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq1d Structured version   Visualization version   GIF version

Theorem esumeq1d 32003
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypotheses
Ref Expression
esumeq1d.0 𝑘𝜑
esumeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
esumeq1d (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)

Proof of Theorem esumeq1d
StepHypRef Expression
1 esumeq1d.0 . 2 𝑘𝜑
2 esumeq1d.1 . 2 (𝜑𝐴 = 𝐵)
3 eqidd 2739 . 2 ((𝜑𝑘𝐴) → 𝐶 = 𝐶)
41, 2, 3esumeq12dvaf 31999 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-iota 6391  df-fv 6441  df-ov 7278  df-esum 31996
This theorem is referenced by:  esummono  32022  esumrnmpt2  32036  esumfzf  32037  hasheuni  32053  esum2dlem  32060  measvuni  32182  ddemeas  32204  omssubadd  32267  carsggect  32285
  Copyright terms: Public domain W3C validator