![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1d | Structured version Visualization version GIF version |
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
Ref | Expression |
---|---|
esumeq1d.0 | ⊢ Ⅎ𝑘𝜑 |
esumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
esumeq1d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq1d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eqidd 2779 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐶) | |
4 | 1, 2, 3 | esumeq12dvaf 30691 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 Ⅎwnf 1827 ∈ wcel 2107 Σ*cesum 30687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-iota 6099 df-fv 6143 df-ov 6925 df-esum 30688 |
This theorem is referenced by: esummono 30714 esumrnmpt2 30728 esumfzf 30729 hasheuni 30745 esum2dlem 30752 measvuni 30875 ddemeas 30897 omssubadd 30960 carsggect 30978 |
Copyright terms: Public domain | W3C validator |