Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1d | Structured version Visualization version GIF version |
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
Ref | Expression |
---|---|
esumeq1d.0 | ⊢ Ⅎ𝑘𝜑 |
esumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
esumeq1d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq1d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eqidd 2737 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐶) | |
4 | 1, 2, 3 | esumeq12dvaf 32238 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Σ*cesum 32234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-iota 6425 df-fv 6481 df-ov 7332 df-esum 32235 |
This theorem is referenced by: esummono 32261 esumrnmpt2 32275 esumfzf 32276 hasheuni 32292 esum2dlem 32299 measvuni 32421 ddemeas 32443 omssubadd 32508 carsggect 32526 |
Copyright terms: Public domain | W3C validator |