| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| esumeq1d.0 | ⊢ Ⅎ𝑘𝜑 |
| esumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| esumeq1d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq1d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | esumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eqidd 2732 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | esumeq12dvaf 34044 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Σ*cesum 34040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-iota 6437 df-fv 6489 df-ov 7349 df-esum 34041 |
| This theorem is referenced by: esummono 34067 esumrnmpt2 34081 esumfzf 34082 hasheuni 34098 esum2dlem 34105 measvuni 34227 ddemeas 34249 omssubadd 34313 carsggect 34331 |
| Copyright terms: Public domain | W3C validator |