Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2sdv Structured version   Visualization version   GIF version

Theorem esumeq2sdv 31412
 Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Hypothesis
Ref Expression
esumeq2sdv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2sdv (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2sdv
StepHypRef Expression
1 esumeq2sdv.1 . . 3 (𝜑𝐵 = 𝐶)
21adantr 484 . 2 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
32esumeq2dv 31411 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  Σ*cesum 31400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ral 3114  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-iota 6287  df-fv 6336  df-ov 7142  df-esum 31401 This theorem is referenced by:  ismeas  31572  isrnmeas  31573
 Copyright terms: Public domain W3C validator