Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2sdv Structured version   Visualization version   GIF version

Theorem esumeq2sdv 30707
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Hypothesis
Ref Expression
esumeq2sdv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2sdv (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2sdv
StepHypRef Expression
1 esumeq2sdv.1 . . 3 (𝜑𝐵 = 𝐶)
21adantr 474 . 2 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
32esumeq2dv 30706 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Σ*cesum 30695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-iota 6101  df-fv 6145  df-ov 6927  df-esum 30696
This theorem is referenced by:  ismeas  30868  isrnmeas  30869
  Copyright terms: Public domain W3C validator