Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2dv Structured version   Visualization version   GIF version

Theorem esumeq2dv 34069
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypothesis
Ref Expression
esumeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2dv (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2dv
StepHypRef Expression
1 nfv 1914 . 2 𝑘𝜑
2 esumeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
32ralrimiva 3132 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
41, 3esumeq2d 34068 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Σ*cesum 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-iota 6484  df-fv 6539  df-ov 7408  df-esum 34059
This theorem is referenced by:  esumeq2sdv  34070  esumle  34089  esummulc1  34112  esummulc2  34113  esumdivc  34114  esumsup  34120  measinb  34252  measres  34253  measdivcst  34255  measdivcstALTV  34256  cntmeas  34257  ddemeas  34267  omsval  34325  totprobd  34458
  Copyright terms: Public domain W3C validator