Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2dv Structured version   Visualization version   GIF version

Theorem esumeq2dv 33788
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypothesis
Ref Expression
esumeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2dv (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2dv
StepHypRef Expression
1 nfv 1909 . 2 𝑘𝜑
2 esumeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
32ralrimiva 3135 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
41, 3esumeq2d 33787 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Σ*cesum 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-iota 6501  df-fv 6557  df-ov 7422  df-esum 33778
This theorem is referenced by:  esumeq2sdv  33789  esumle  33808  esummulc1  33831  esummulc2  33832  esumdivc  33833  esumsup  33839  measinb  33971  measres  33972  measdivcst  33974  measdivcstALTV  33975  cntmeas  33976  ddemeas  33986  omsval  34044  totprobd  34177
  Copyright terms: Public domain W3C validator