Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2dv Structured version   Visualization version   GIF version

Theorem esumeq2dv 34051
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypothesis
Ref Expression
esumeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2dv (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2dv
StepHypRef Expression
1 nfv 1915 . 2 𝑘𝜑
2 esumeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
32ralrimiva 3124 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
41, 3esumeq2d 34050 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Σ*cesum 34040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-iota 6437  df-fv 6489  df-ov 7349  df-esum 34041
This theorem is referenced by:  esumeq2sdv  34052  esumle  34071  esummulc1  34094  esummulc2  34095  esumdivc  34096  esumsup  34102  measinb  34234  measres  34235  measdivcst  34237  measdivcstALTV  34238  cntmeas  34239  ddemeas  34249  omsval  34306  totprobd  34439
  Copyright terms: Public domain W3C validator