Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq2dv Structured version   Visualization version   GIF version

Theorem esumeq2dv 31985
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypothesis
Ref Expression
esumeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
esumeq2dv (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumeq2dv
StepHypRef Expression
1 nfv 1920 . 2 𝑘𝜑
2 esumeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
32ralrimiva 3109 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
41, 3esumeq2d 31984 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Σ*cesum 31974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-iota 6388  df-fv 6438  df-ov 7271  df-esum 31975
This theorem is referenced by:  esumeq2sdv  31986  esumle  32005  esummulc1  32028  esummulc2  32029  esumdivc  32030  esumsup  32036  measinb  32168  measres  32169  measdivcst  32171  measdivcstALTV  32172  cntmeas  32173  ddemeas  32183  omsval  32239  totprobd  32372
  Copyright terms: Public domain W3C validator