Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfesum1 Structured version   Visualization version   GIF version

Theorem nfesum1 34037
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypothesis
Ref Expression
nfesum1.1 𝑘𝐴
Assertion
Ref Expression
nfesum1 𝑘Σ*𝑘𝐴𝐵

Proof of Theorem nfesum1
StepHypRef Expression
1 df-esum 34025 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 nfcv 2892 . . . 4 𝑘(ℝ*𝑠s (0[,]+∞))
3 nfcv 2892 . . . 4 𝑘 tsums
4 nfmpt1 5209 . . . 4 𝑘(𝑘𝐴𝐵)
52, 3, 4nfov 7420 . . 3 𝑘((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
65nfuni 4881 . 2 𝑘 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
71, 6nfcxfr 2890 1 𝑘Σ*𝑘𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877   cuni 4874  cmpt 5191  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  [,]cicc 13316  s cress 17207  *𝑠cxrs 17470   tsums ctsu 24020  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-iota 6467  df-fv 6522  df-ov 7393  df-esum 34025
This theorem is referenced by:  esumfsup  34067  esum2d  34090  oms0  34295  omssubadd  34298
  Copyright terms: Public domain W3C validator