Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfesum1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
Ref | Expression |
---|---|
nfesum1.1 | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
nfesum1 | ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 31515 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑘(ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑘 tsums | |
4 | nfmpt1 5130 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | nfov 7180 | . . 3 ⊢ Ⅎ𝑘((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
6 | 5 | nfuni 4805 | . 2 ⊢ Ⅎ𝑘∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
7 | 1, 6 | nfcxfr 2917 | 1 ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2899 ∪ cuni 4798 ↦ cmpt 5112 (class class class)co 7150 0cc0 10575 +∞cpnf 10710 [,]cicc 12782 ↾s cress 16542 ℝ*𝑠cxrs 16831 tsums ctsu 22826 Σ*cesum 31514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-iota 6294 df-fv 6343 df-ov 7153 df-esum 31515 |
This theorem is referenced by: esumfsup 31557 esum2d 31580 oms0 31783 omssubadd 31786 |
Copyright terms: Public domain | W3C validator |