![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfesum1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
Ref | Expression |
---|---|
nfesum1.1 | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
nfesum1 | ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33992 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘(ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘 tsums | |
4 | nfmpt1 5274 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | nfov 7478 | . . 3 ⊢ Ⅎ𝑘((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
6 | 5 | nfuni 4938 | . 2 ⊢ Ⅎ𝑘∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
7 | 1, 6 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ∪ cuni 4931 ↦ cmpt 5249 (class class class)co 7448 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 ↾s cress 17287 ℝ*𝑠cxrs 17560 tsums ctsu 24155 Σ*cesum 33991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 df-ov 7451 df-esum 33992 |
This theorem is referenced by: esumfsup 34034 esum2d 34057 oms0 34262 omssubadd 34265 |
Copyright terms: Public domain | W3C validator |