| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfesum1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| nfesum1.1 | ⊢ Ⅎ𝑘𝐴 |
| Ref | Expression |
|---|---|
| nfesum1 | ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34059 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑘(ℝ*𝑠 ↾s (0[,]+∞)) | |
| 3 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑘 tsums | |
| 4 | nfmpt1 5220 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | nfov 7435 | . . 3 ⊢ Ⅎ𝑘((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 6 | 5 | nfuni 4890 | . 2 ⊢ Ⅎ𝑘∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 7 | 1, 6 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 ∪ cuni 4883 ↦ cmpt 5201 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 [,]cicc 13365 ↾s cress 17251 ℝ*𝑠cxrs 17514 tsums ctsu 24064 Σ*cesum 34058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-iota 6484 df-fv 6539 df-ov 7408 df-esum 34059 |
| This theorem is referenced by: esumfsup 34101 esum2d 34124 oms0 34329 omssubadd 34332 |
| Copyright terms: Public domain | W3C validator |