Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfesum1 Structured version   Visualization version   GIF version

Theorem nfesum1 30912
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypothesis
Ref Expression
nfesum1.1 𝑘𝐴
Assertion
Ref Expression
nfesum1 𝑘Σ*𝑘𝐴𝐵

Proof of Theorem nfesum1
StepHypRef Expression
1 df-esum 30900 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 nfcv 2951 . . . 4 𝑘(ℝ*𝑠s (0[,]+∞))
3 nfcv 2951 . . . 4 𝑘 tsums
4 nfmpt1 5065 . . . 4 𝑘(𝑘𝐴𝐵)
52, 3, 4nfov 7053 . . 3 𝑘((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
65nfuni 4757 . 2 𝑘 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
71, 6nfcxfr 2949 1 𝑘Σ*𝑘𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2935   cuni 4751  cmpt 5047  (class class class)co 7023  0cc0 10390  +∞cpnf 10525  [,]cicc 12595  s cress 16317  *𝑠cxrs 16606   tsums ctsu 22421  Σ*cesum 30899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-iota 6196  df-fv 6240  df-ov 7026  df-esum 30900
This theorem is referenced by:  esumfsup  30942  esum2d  30965  oms0  31168  omssubadd  31171
  Copyright terms: Public domain W3C validator