Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfesum1 Structured version   Visualization version   GIF version

Theorem nfesum1 34004
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypothesis
Ref Expression
nfesum1.1 𝑘𝐴
Assertion
Ref Expression
nfesum1 𝑘Σ*𝑘𝐴𝐵

Proof of Theorem nfesum1
StepHypRef Expression
1 df-esum 33992 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 nfcv 2908 . . . 4 𝑘(ℝ*𝑠s (0[,]+∞))
3 nfcv 2908 . . . 4 𝑘 tsums
4 nfmpt1 5274 . . . 4 𝑘(𝑘𝐴𝐵)
52, 3, 4nfov 7478 . . 3 𝑘((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
65nfuni 4938 . 2 𝑘 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
71, 6nfcxfr 2906 1 𝑘Σ*𝑘𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893   cuni 4931  cmpt 5249  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,]cicc 13410  s cress 17287  *𝑠cxrs 17560   tsums ctsu 24155  Σ*cesum 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-iota 6525  df-fv 6581  df-ov 7451  df-esum 33992
This theorem is referenced by:  esumfsup  34034  esum2d  34057  oms0  34262  omssubadd  34265
  Copyright terms: Public domain W3C validator