MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceu Structured version   Visualization version   GIF version

Theorem pceu 16884
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
Assertion
Ref Expression
pceu ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑧,𝑁   𝑃,𝑛,𝑥,𝑦,𝑧   𝑧,𝑆   𝑧,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem pceu
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℚ)
2 elq 12992 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
31, 2sylib 218 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
4 ovex 7464 . . . . . . . . 9 (𝑆𝑇) ∈ V
5 biidd 262 . . . . . . . . 9 (𝑧 = (𝑆𝑇) → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦)))
64, 5ceqsexv 3532 . . . . . . . 8 (∃𝑧(𝑧 = (𝑆𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦))
7 exancom 1861 . . . . . . . 8 (∃𝑧(𝑧 = (𝑆𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
86, 7bitr3i 277 . . . . . . 7 (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
98rexbii 3094 . . . . . 6 (∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
10 rexcom4 3288 . . . . . 6 (∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
119, 10bitri 275 . . . . 5 (∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
1211rexbii 3094 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑥 ∈ ℤ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
13 rexcom4 3288 . . . 4 (∃𝑥 ∈ ℤ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
1412, 13bitri 275 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
153, 14sylib 218 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
16 pcval.1 . . . . . . . . . . 11 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
17 pcval.2 . . . . . . . . . . 11 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
18 eqid 2737 . . . . . . . . . . 11 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
19 eqid 2737 . . . . . . . . . . 11 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
20 simp11l 1285 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑃 ∈ ℙ)
21 simp11r 1286 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 ≠ 0)
22 simp12 1205 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
23 simp13l 1289 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑥 / 𝑦))
24 simp2 1138 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
25 simp3l 1202 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑠 / 𝑡))
2616, 17, 18, 19, 20, 21, 22, 23, 24, 25pceulem 16883 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑆𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))
27 simp13r 1290 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = (𝑆𝑇))
28 simp3r 1203 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))
2926, 27, 283eqtr4d 2787 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)
30293exp 1120 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) → ((𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))
3130rexlimdvv 3212 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))
32313exp 1120 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))))
3332adantrl 716 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))))
3433rexlimdvv 3212 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))
3534impd 410 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤))
3635alrimivv 1928 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∀𝑧𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤))
37 eqeq1 2741 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑆𝑇) ↔ 𝑤 = (𝑆𝑇)))
3837anbi2d 630 . . . . 5 (𝑧 = 𝑤 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇))))
39382rexbidv 3222 . . . 4 (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇))))
40 oveq1 7438 . . . . . . . . 9 (𝑥 = 𝑠 → (𝑥 / 𝑦) = (𝑠 / 𝑦))
4140eqeq2d 2748 . . . . . . . 8 (𝑥 = 𝑠 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑦)))
42 breq2 5147 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑠))
4342rabbidv 3444 . . . . . . . . . . . 12 (𝑥 = 𝑠 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠})
4443supeq1d 9486 . . . . . . . . . . 11 (𝑥 = 𝑠 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ))
4516, 44eqtrid 2789 . . . . . . . . . 10 (𝑥 = 𝑠𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ))
4645oveq1d 7446 . . . . . . . . 9 (𝑥 = 𝑠 → (𝑆𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))
4746eqeq2d 2748 . . . . . . . 8 (𝑥 = 𝑠 → (𝑤 = (𝑆𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)))
4841, 47anbi12d 632 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))))
4948rexbidv 3179 . . . . . 6 (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ ∃𝑦 ∈ ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))))
50 oveq2 7439 . . . . . . . . 9 (𝑦 = 𝑡 → (𝑠 / 𝑦) = (𝑠 / 𝑡))
5150eqeq2d 2748 . . . . . . . 8 (𝑦 = 𝑡 → (𝑁 = (𝑠 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑡)))
52 breq2 5147 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝑡))
5352rabbidv 3444 . . . . . . . . . . . 12 (𝑦 = 𝑡 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡})
5453supeq1d 9486 . . . . . . . . . . 11 (𝑦 = 𝑡 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))
5517, 54eqtrid 2789 . . . . . . . . . 10 (𝑦 = 𝑡𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))
5655oveq2d 7447 . . . . . . . . 9 (𝑦 = 𝑡 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))
5756eqeq2d 2748 . . . . . . . 8 (𝑦 = 𝑡 → (𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))))
5851, 57anbi12d 632 . . . . . . 7 (𝑦 = 𝑡 → ((𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))))
5958cbvrexvw 3238 . . . . . 6 (∃𝑦 ∈ ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))))
6049, 59bitrdi 287 . . . . 5 (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))))
6160cbvrexvw 3238 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))))
6239, 61bitrdi 287 . . 3 (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))))
6362eu4 2615 . 2 (∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ (∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∀𝑧𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)))
6415, 36, 63sylanbrc 583 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2568  wne 2940  wrex 3070  {crab 3436   class class class wbr 5143  (class class class)co 7431  supcsup 9480  cr 11154  0cc0 11155   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cq 12990  cexp 14102  cdvds 16290  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709
This theorem is referenced by:  pczpre  16885  pcdiv  16890
  Copyright terms: Public domain W3C validator