MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem2 Structured version   Visualization version   GIF version

Theorem initoeu2lem2 18028
Description: Lemma 2 for initoeu2 18029. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem2 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Distinct variable groups:   𝐴,𝑔,𝑓   𝐵,𝑔,𝑓   𝐶,𝑓,𝑔   𝜑,𝑔,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓   𝐷,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝐾   𝑔,𝑋   ,𝑔

Proof of Theorem initoeu2lem2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ovex 7438 . . . . . . . . . 10 (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V
2 eleq1 2822 . . . . . . . . . . 11 (𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) → (𝑔 ∈ (𝐵𝐻𝐷) ↔ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
32spcegv 3576 . . . . . . . . . 10 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
41, 3mp1i 13 . . . . . . . . 9 (𝜑 → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
54com12 32 . . . . . . . 8 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
653ad2ant3 1135 . . . . . . 7 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
76com12 32 . . . . . 6 (𝜑 → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
87a1d 25 . . . . 5 (𝜑 → ((𝐴𝑋𝐵𝑋𝐷𝑋) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))))
983imp 1110 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
109adantr 480 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
11 simpll1 1213 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝜑)
12 simpll2 1214 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
13 3simpb 1149 . . . . . . . . . . 11 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
14133ad2ant3 1135 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1514adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1615adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
17 simplr 768 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
18 simpl32 1256 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
1918adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
20 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 ∈ (𝐵𝐻𝐷))
21 initoeu1.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
22 initoeu1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (InitO‘𝐶))
23 initoeu2lem.x . . . . . . . . . 10 𝑋 = (Base‘𝐶)
24 initoeu2lem.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
25 initoeu2lem.i . . . . . . . . . 10 𝐼 = (Iso‘𝐶)
26 initoeu2lem.o . . . . . . . . . 10 = (comp‘𝐶)
2721, 22, 23, 24, 25, 26initoeu2lem1 18027 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
2827imp 406 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
2911, 12, 16, 17, 19, 20, 28syl33anc 1387 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3029adantrr 717 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
31 simpll1 1213 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝜑)
32 simpll2 1214 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
3315adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
34 simplr 768 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
3518adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
36 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∈ (𝐵𝐻𝐷))
3721, 22, 23, 24, 25, 26initoeu2lem1 18027 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
3837imp 406 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3931, 32, 33, 34, 35, 36, 38syl33anc 1387 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4039adantrl 716 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4130, 40eqtr4d 2773 . . . . 5 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = )
4241ex 412 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
4342alrimivv 1928 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
44 eleq1 2822 . . . 4 (𝑔 = → (𝑔 ∈ (𝐵𝐻𝐷) ↔ ∈ (𝐵𝐻𝐷)))
4544eu4 2614 . . 3 (∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷) ↔ (∃𝑔 𝑔 ∈ (𝐵𝐻𝐷) ∧ ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = )))
4610, 43, 45sylanbrc 583 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷))
4746ex 412 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  Vcvv 3459  cop 4607  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Isociso 17759  InitOcinito 17994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-cat 17680  df-cid 17681  df-sect 17760  df-inv 17761  df-iso 17762
This theorem is referenced by:  initoeu2  18029
  Copyright terms: Public domain W3C validator