MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem2 Structured version   Visualization version   GIF version

Theorem initoeu2lem2 17104
Description: Lemma 2 for initoeu2 17105. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem2 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Distinct variable groups:   𝐴,𝑔,𝑓   𝐵,𝑔,𝑓   𝐶,𝑓,𝑔   𝜑,𝑔,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓   𝐷,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝐾   𝑔,𝑋   ,𝑔

Proof of Theorem initoeu2lem2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ovex 7048 . . . . . . . . . 10 (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V
2 eleq1 2870 . . . . . . . . . . 11 (𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) → (𝑔 ∈ (𝐵𝐻𝐷) ↔ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
32spcegv 3540 . . . . . . . . . 10 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
41, 3mp1i 13 . . . . . . . . 9 (𝜑 → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
54com12 32 . . . . . . . 8 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
653ad2ant3 1128 . . . . . . 7 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
76com12 32 . . . . . 6 (𝜑 → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
87a1d 25 . . . . 5 (𝜑 → ((𝐴𝑋𝐵𝑋𝐷𝑋) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))))
983imp 1104 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
109adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
11 simpll1 1205 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝜑)
12 simpll2 1206 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
13 3simpb 1142 . . . . . . . . . . 11 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
14133ad2ant3 1128 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1514adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1615adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
17 simplr 765 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
18 simpl32 1248 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
1918adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
20 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 ∈ (𝐵𝐻𝐷))
21 initoeu1.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
22 initoeu1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (InitO‘𝐶))
23 initoeu2lem.x . . . . . . . . . 10 𝑋 = (Base‘𝐶)
24 initoeu2lem.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
25 initoeu2lem.i . . . . . . . . . 10 𝐼 = (Iso‘𝐶)
26 initoeu2lem.o . . . . . . . . . 10 = (comp‘𝐶)
2721, 22, 23, 24, 25, 26initoeu2lem1 17103 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
2827imp 407 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
2911, 12, 16, 17, 19, 20, 28syl33anc 1378 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3029adantrr 713 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
31 simpll1 1205 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝜑)
32 simpll2 1206 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
3315adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
34 simplr 765 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
3518adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
36 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∈ (𝐵𝐻𝐷))
3721, 22, 23, 24, 25, 26initoeu2lem1 17103 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
3837imp 407 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3931, 32, 33, 34, 35, 36, 38syl33anc 1378 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4039adantrl 712 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4130, 40eqtr4d 2834 . . . . 5 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = )
4241ex 413 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
4342alrimivv 1906 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
44 eleq1 2870 . . . 4 (𝑔 = → (𝑔 ∈ (𝐵𝐻𝐷) ↔ ∈ (𝐵𝐻𝐷)))
4544eu4 2667 . . 3 (∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷) ↔ (∃𝑔 𝑔 ∈ (𝐵𝐻𝐷) ∧ ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = )))
4610, 43, 45sylanbrc 583 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷))
4746ex 413 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080  wal 1520   = wceq 1522  wex 1761  wcel 2081  ∃!weu 2611  Vcvv 3437  cop 4478  cfv 6225  (class class class)co 7016  Basecbs 16312  Hom chom 16405  compcco 16406  Catccat 16764  Isociso 16845  InitOcinito 17077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-cat 16768  df-cid 16769  df-sect 16846  df-inv 16847  df-iso 16848
This theorem is referenced by:  initoeu2  17105
  Copyright terms: Public domain W3C validator