MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem2 Structured version   Visualization version   GIF version

Theorem initoeu2lem2 17804
Description: Lemma 2 for initoeu2 17805. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem2 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Distinct variable groups:   𝐴,𝑔,𝑓   𝐵,𝑔,𝑓   𝐶,𝑓,𝑔   𝜑,𝑔,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓   𝐷,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝐾   𝑔,𝑋   ,𝑔

Proof of Theorem initoeu2lem2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ovex 7349 . . . . . . . . . 10 (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V
2 eleq1 2824 . . . . . . . . . . 11 (𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) → (𝑔 ∈ (𝐵𝐻𝐷) ↔ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
32spcegv 3544 . . . . . . . . . 10 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
41, 3mp1i 13 . . . . . . . . 9 (𝜑 → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
54com12 32 . . . . . . . 8 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
653ad2ant3 1134 . . . . . . 7 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
76com12 32 . . . . . 6 (𝜑 → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
87a1d 25 . . . . 5 (𝜑 → ((𝐴𝑋𝐵𝑋𝐷𝑋) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))))
983imp 1110 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
109adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
11 simpll1 1211 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝜑)
12 simpll2 1212 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
13 3simpb 1148 . . . . . . . . . . 11 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
14133ad2ant3 1134 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1514adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1615adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
17 simplr 766 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
18 simpl32 1254 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
1918adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
20 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 ∈ (𝐵𝐻𝐷))
21 initoeu1.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
22 initoeu1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (InitO‘𝐶))
23 initoeu2lem.x . . . . . . . . . 10 𝑋 = (Base‘𝐶)
24 initoeu2lem.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
25 initoeu2lem.i . . . . . . . . . 10 𝐼 = (Iso‘𝐶)
26 initoeu2lem.o . . . . . . . . . 10 = (comp‘𝐶)
2721, 22, 23, 24, 25, 26initoeu2lem1 17803 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
2827imp 407 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
2911, 12, 16, 17, 19, 20, 28syl33anc 1384 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3029adantrr 714 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
31 simpll1 1211 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝜑)
32 simpll2 1212 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
3315adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
34 simplr 766 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
3518adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
36 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∈ (𝐵𝐻𝐷))
3721, 22, 23, 24, 25, 26initoeu2lem1 17803 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
3837imp 407 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3931, 32, 33, 34, 35, 36, 38syl33anc 1384 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4039adantrl 713 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4130, 40eqtr4d 2779 . . . . 5 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = )
4241ex 413 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
4342alrimivv 1930 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
44 eleq1 2824 . . . 4 (𝑔 = → (𝑔 ∈ (𝐵𝐻𝐷) ↔ ∈ (𝐵𝐻𝐷)))
4544eu4 2615 . . 3 (∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷) ↔ (∃𝑔 𝑔 ∈ (𝐵𝐻𝐷) ∧ ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = )))
4610, 43, 45sylanbrc 583 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷))
4746ex 413 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1538   = wceq 1540  wex 1780  wcel 2105  ∃!weu 2566  Vcvv 3440  cop 4576  cfv 6465  (class class class)co 7316  Basecbs 16986  Hom chom 17047  compcco 17048  Catccat 17447  Isociso 17532  InitOcinito 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-1st 7877  df-2nd 7878  df-cat 17451  df-cid 17452  df-sect 17533  df-inv 17534  df-iso 17535
This theorem is referenced by:  initoeu2  17805
  Copyright terms: Public domain W3C validator