MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3eu Structured version   Visualization version   GIF version

Theorem gsumval3eu 19420
Description: The group sum as defined in gsumval3a 19419 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3a.t (𝜑𝑊 ∈ Fin)
gsumval3a.n (𝜑𝑊 ≠ ∅)
gsumval3a.s (𝜑𝑊𝐴)
Assertion
Ref Expression
gsumval3eu (𝜑 → ∃!𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))
Distinct variable groups:   𝑥,𝑓, +   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥   𝑥, 0   𝑓,𝐺,𝑥   𝑥,𝑉   𝐵,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝑊,𝑥
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem gsumval3eu
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3a.n . . . . . 6 (𝜑𝑊 ≠ ∅)
21neneqd 2947 . . . . 5 (𝜑 → ¬ 𝑊 = ∅)
3 gsumval3a.t . . . . . . 7 (𝜑𝑊 ∈ Fin)
4 fz1f1o 15350 . . . . . . 7 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
53, 4syl 17 . . . . . 6 (𝜑 → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
65ord 860 . . . . 5 (𝜑 → (¬ 𝑊 = ∅ → ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
72, 6mpd 15 . . . 4 (𝜑 → ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊))
87simprd 495 . . 3 (𝜑 → ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
9 excom 2164 . . . 4 (∃𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑓𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))
10 exancom 1865 . . . . . 6 (∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑥(𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊))
11 fvex 6769 . . . . . . 7 (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∈ V
12 biidd 261 . . . . . . 7 (𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) → (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))–1-1-onto𝑊))
1311, 12ceqsexv 3469 . . . . . 6 (∃𝑥(𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
1410, 13bitri 274 . . . . 5 (∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
1514exbii 1851 . . . 4 (∃𝑓𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
169, 15bitri 274 . . 3 (∃𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
178, 16sylibr 233 . 2 (𝜑 → ∃𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))
18 exdistrv 1960 . . . 4 (∃𝑓𝑔((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) ↔ (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))))
19 an4 652 . . . . . 6 (((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊) ∧ (𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) ↔ ((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))))
20 gsumval3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
2120adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐺 ∈ Mnd)
22 gsumval3.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
23 gsumval3.p . . . . . . . . . . . 12 + = (+g𝐺)
2422, 23mndcl 18308 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
25243expb 1118 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
2621, 25sylan 579 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
27 gsumval3.c . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2827adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2928sselda 3917 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ ran 𝐹) → 𝑥 ∈ (𝑍‘ran 𝐹))
3029adantrr 713 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → 𝑥 ∈ (𝑍‘ran 𝐹))
31 simprr 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → 𝑦 ∈ ran 𝐹)
32 gsumval3.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
3323, 32cntzi 18850 . . . . . . . . . 10 ((𝑥 ∈ (𝑍‘ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3430, 31, 33syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3522, 23mndass 18309 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3621, 35sylan 579 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
377simpld 494 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℕ)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → (♯‘𝑊) ∈ ℕ)
39 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
4038, 39eleqtrdi 2849 . . . . . . . . 9 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → (♯‘𝑊) ∈ (ℤ‘1))
41 gsumval3.f . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
4241adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐹:𝐴𝐵)
4342frnd 6592 . . . . . . . . 9 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran 𝐹𝐵)
44 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)
45 f1ocnv 6712 . . . . . . . . . . 11 (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:𝑊1-1-onto→(1...(♯‘𝑊)))
4644, 45syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑔:𝑊1-1-onto→(1...(♯‘𝑊)))
47 simprl 767 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
48 f1oco 6722 . . . . . . . . . 10 ((𝑔:𝑊1-1-onto→(1...(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → (𝑔𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊)))
4946, 47, 48syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝑔𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊)))
50 f1of 6700 . . . . . . . . . . . 12 (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))⟶𝑊)
5144, 50syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑔:(1...(♯‘𝑊))⟶𝑊)
52 fvco3 6849 . . . . . . . . . . 11 ((𝑔:(1...(♯‘𝑊))⟶𝑊𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹𝑔)‘𝑥) = (𝐹‘(𝑔𝑥)))
5351, 52sylan 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹𝑔)‘𝑥) = (𝐹‘(𝑔𝑥)))
5442ffnd 6585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐹 Fn 𝐴)
55 gsumval3a.s . . . . . . . . . . . . . 14 (𝜑𝑊𝐴)
5655adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑊𝐴)
5751, 56fssd 6602 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑔:(1...(♯‘𝑊))⟶𝐴)
5857ffvelrnda 6943 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → (𝑔𝑥) ∈ 𝐴)
59 fnfvelrn 6940 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ (𝑔𝑥) ∈ 𝐴) → (𝐹‘(𝑔𝑥)) ∈ ran 𝐹)
6054, 58, 59syl2an2r 681 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → (𝐹‘(𝑔𝑥)) ∈ ran 𝐹)
6153, 60eqeltrd 2839 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹𝑔)‘𝑥) ∈ ran 𝐹)
62 f1of 6700 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))⟶𝑊)
6347, 62syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))⟶𝑊)
64 fvco3 6849 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝑊))⟶𝑊𝑘 ∈ (1...(♯‘𝑊))) → ((𝑔𝑓)‘𝑘) = (𝑔‘(𝑓𝑘)))
6563, 64sylan 579 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝑔𝑓)‘𝑘) = (𝑔‘(𝑓𝑘)))
6665fveq2d 6760 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑔‘((𝑔𝑓)‘𝑘)) = (𝑔‘(𝑔‘(𝑓𝑘))))
6763ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑓𝑘) ∈ 𝑊)
68 f1ocnvfv2 7130 . . . . . . . . . . . . 13 ((𝑔:(1...(♯‘𝑊))–1-1-onto𝑊 ∧ (𝑓𝑘) ∈ 𝑊) → (𝑔‘(𝑔‘(𝑓𝑘))) = (𝑓𝑘))
6944, 67, 68syl2an2r 681 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑔‘(𝑔‘(𝑓𝑘))) = (𝑓𝑘))
7066, 69eqtr2d 2779 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑓𝑘) = (𝑔‘((𝑔𝑓)‘𝑘)))
7170fveq2d 6760 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝐹‘(𝑓𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
72 fvco3 6849 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝑊))⟶𝑊𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
7363, 72sylan 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
74 f1of 6700 . . . . . . . . . . . . 13 ((𝑔𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊)) → (𝑔𝑓):(1...(♯‘𝑊))⟶(1...(♯‘𝑊)))
7549, 74syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝑔𝑓):(1...(♯‘𝑊))⟶(1...(♯‘𝑊)))
7675ffvelrnda 6943 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝑔𝑓)‘𝑘) ∈ (1...(♯‘𝑊)))
77 fvco3 6849 . . . . . . . . . . 11 ((𝑔:(1...(♯‘𝑊))⟶𝐴 ∧ ((𝑔𝑓)‘𝑘) ∈ (1...(♯‘𝑊))) → ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
7857, 76, 77syl2an2r 681 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
7971, 73, 783eqtr4d 2788 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) = ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)))
8026, 34, 36, 40, 43, 49, 61, 79seqf1o 13692 . . . . . . . 8 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))
81 eqeq12 2755 . . . . . . . 8 ((𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊))) → (𝑥 = 𝑦 ↔ (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘𝑊))))
8280, 81syl5ibrcom 246 . . . . . . 7 ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊))) → 𝑥 = 𝑦))
8382expimpd 453 . . . . . 6 (𝜑 → (((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊) ∧ (𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))
8419, 83syl5bir 242 . . . . 5 (𝜑 → (((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))
8584exlimdvv 1938 . . . 4 (𝜑 → (∃𝑓𝑔((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))
8618, 85syl5bir 242 . . 3 (𝜑 → ((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))
8786alrimivv 1932 . 2 (𝜑 → ∀𝑥𝑦((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))
88 eqeq1 2742 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))
8988anbi2d 628 . . . . 5 (𝑥 = 𝑦 → ((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
9089exbidv 1925 . . . 4 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
91 f1oeq1 6688 . . . . . 6 (𝑓 = 𝑔 → (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑔:(1...(♯‘𝑊))–1-1-onto𝑊))
92 coeq2 5756 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐹𝑓) = (𝐹𝑔))
9392seqeq3d 13657 . . . . . . . 8 (𝑓 = 𝑔 → seq1( + , (𝐹𝑓)) = seq1( + , (𝐹𝑔)))
9493fveq1d 6758 . . . . . . 7 (𝑓 = 𝑔 → (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))
9594eqeq2d 2749 . . . . . 6 (𝑓 = 𝑔 → (𝑦 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊))))
9691, 95anbi12d 630 . . . . 5 (𝑓 = 𝑔 → ((𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ (𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))))
9796cbvexvw 2041 . . . 4 (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊))))
9890, 97bitrdi 286 . . 3 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))))
9998eu4 2617 . 2 (∃!𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ↔ (∃𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ ∀𝑥𝑦((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)))
10017, 87, 99sylanbrc 582 1 (𝜑 → ∃!𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  wne 2942  wss 3883  c0 4253  ccnv 5579  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  1c1 10803  cn 11903  cuz 12511  ...cfz 13168  seqcseq 13649  chash 13972  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-cntz 18838
This theorem is referenced by:  gsumval3lem2  19422
  Copyright terms: Public domain W3C validator