MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3eu Structured version   Visualization version   GIF version

Theorem gsumval3eu 19766
Description: The group sum as defined in gsumval3a 19765 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b 𝐡 = (Baseβ€˜πΊ)
gsumval3.0 0 = (0gβ€˜πΊ)
gsumval3.p + = (+gβ€˜πΊ)
gsumval3.z 𝑍 = (Cntzβ€˜πΊ)
gsumval3.g (πœ‘ β†’ 𝐺 ∈ Mnd)
gsumval3.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
gsumval3.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
gsumval3.c (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
gsumval3a.t (πœ‘ β†’ π‘Š ∈ Fin)
gsumval3a.n (πœ‘ β†’ π‘Š β‰  βˆ…)
gsumval3a.s (πœ‘ β†’ π‘Š βŠ† 𝐴)
Assertion
Ref Expression
gsumval3eu (πœ‘ β†’ βˆƒ!π‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))))
Distinct variable groups:   π‘₯,𝑓, +   𝐴,𝑓,π‘₯   πœ‘,𝑓,π‘₯   π‘₯, 0   𝑓,𝐺,π‘₯   π‘₯,𝑉   𝐡,𝑓,π‘₯   𝑓,𝐹,π‘₯   𝑓,π‘Š,π‘₯
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(π‘₯,𝑓)

Proof of Theorem gsumval3eu
Dummy variables 𝑔 π‘˜ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3a.n . . . . . 6 (πœ‘ β†’ π‘Š β‰  βˆ…)
21neneqd 2945 . . . . 5 (πœ‘ β†’ Β¬ π‘Š = βˆ…)
3 gsumval3a.t . . . . . . 7 (πœ‘ β†’ π‘Š ∈ Fin)
4 fz1f1o 15652 . . . . . . 7 (π‘Š ∈ Fin β†’ (π‘Š = βˆ… ∨ ((β™―β€˜π‘Š) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)))
53, 4syl 17 . . . . . 6 (πœ‘ β†’ (π‘Š = βˆ… ∨ ((β™―β€˜π‘Š) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)))
65ord 862 . . . . 5 (πœ‘ β†’ (Β¬ π‘Š = βˆ… β†’ ((β™―β€˜π‘Š) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)))
72, 6mpd 15 . . . 4 (πœ‘ β†’ ((β™―β€˜π‘Š) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š))
87simprd 496 . . 3 (πœ‘ β†’ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
9 excom 2162 . . . 4 (βˆƒπ‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘“βˆƒπ‘₯(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))))
10 exancom 1864 . . . . . 6 (βˆƒπ‘₯(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘₯(π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∧ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š))
11 fvex 6901 . . . . . . 7 (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∈ V
12 biidd 261 . . . . . . 7 (π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) β†’ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ↔ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š))
1311, 12ceqsexv 3525 . . . . . 6 (βˆƒπ‘₯(π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∧ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š) ↔ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
1410, 13bitri 274 . . . . 5 (βˆƒπ‘₯(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
1514exbii 1850 . . . 4 (βˆƒπ‘“βˆƒπ‘₯(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
169, 15bitri 274 . . 3 (βˆƒπ‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
178, 16sylibr 233 . 2 (πœ‘ β†’ βˆƒπ‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))))
18 exdistrv 1959 . . . 4 (βˆƒπ‘“βˆƒπ‘”((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) ↔ (βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ βˆƒπ‘”(𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))))
19 an4 654 . . . . . 6 (((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š) ∧ (π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) ↔ ((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))))
20 gsumval3.g . . . . . . . . . . 11 (πœ‘ β†’ 𝐺 ∈ Mnd)
2120adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝐺 ∈ Mnd)
22 gsumval3.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜πΊ)
23 gsumval3.p . . . . . . . . . . . 12 + = (+gβ€˜πΊ)
2422, 23mndcl 18629 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
25243expb 1120 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
2621, 25sylan 580 . . . . . . . . 9 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
27 gsumval3.c . . . . . . . . . . . . 13 (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
2827adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
2928sselda 3981 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘₯ ∈ ran 𝐹) β†’ π‘₯ ∈ (π‘β€˜ran 𝐹))
3029adantrr 715 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ (π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) β†’ π‘₯ ∈ (π‘β€˜ran 𝐹))
31 simprr 771 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ (π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) β†’ 𝑦 ∈ ran 𝐹)
32 gsumval3.z . . . . . . . . . . 11 𝑍 = (Cntzβ€˜πΊ)
3323, 32cntzi 19187 . . . . . . . . . 10 ((π‘₯ ∈ (π‘β€˜ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))
3430, 31, 33syl2anc 584 . . . . . . . . 9 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ (π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))
3522, 23mndass 18630 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((π‘₯ + 𝑦) + 𝑧) = (π‘₯ + (𝑦 + 𝑧)))
3621, 35sylan 580 . . . . . . . . 9 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((π‘₯ + 𝑦) + 𝑧) = (π‘₯ + (𝑦 + 𝑧)))
377simpld 495 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜π‘Š) ∈ β„•)
3837adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ (β™―β€˜π‘Š) ∈ β„•)
39 nnuz 12861 . . . . . . . . . 10 β„• = (β„€β‰₯β€˜1)
4038, 39eleqtrdi 2843 . . . . . . . . 9 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ (β™―β€˜π‘Š) ∈ (β„€β‰₯β€˜1))
41 gsumval3.f . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
4241adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝐹:𝐴⟢𝐡)
4342frnd 6722 . . . . . . . . 9 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ ran 𝐹 βŠ† 𝐡)
44 simprr 771 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
45 f1ocnv 6842 . . . . . . . . . . 11 (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š β†’ ◑𝑔:π‘Šβ€“1-1-ontoβ†’(1...(β™―β€˜π‘Š)))
4644, 45syl 17 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ ◑𝑔:π‘Šβ€“1-1-ontoβ†’(1...(β™―β€˜π‘Š)))
47 simprl 769 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
48 f1oco 6853 . . . . . . . . . 10 ((◑𝑔:π‘Šβ€“1-1-ontoβ†’(1...(β™―β€˜π‘Š)) ∧ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š) β†’ (◑𝑔 ∘ 𝑓):(1...(β™―β€˜π‘Š))–1-1-ontoβ†’(1...(β™―β€˜π‘Š)))
4946, 47, 48syl2anc 584 . . . . . . . . 9 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ (◑𝑔 ∘ 𝑓):(1...(β™―β€˜π‘Š))–1-1-ontoβ†’(1...(β™―β€˜π‘Š)))
50 f1of 6830 . . . . . . . . . . . 12 (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š β†’ 𝑔:(1...(β™―β€˜π‘Š))βŸΆπ‘Š)
5144, 50syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝑔:(1...(β™―β€˜π‘Š))βŸΆπ‘Š)
52 fvco3 6987 . . . . . . . . . . 11 ((𝑔:(1...(β™―β€˜π‘Š))βŸΆπ‘Š ∧ π‘₯ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑔)β€˜π‘₯) = (πΉβ€˜(π‘”β€˜π‘₯)))
5351, 52sylan 580 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘₯ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑔)β€˜π‘₯) = (πΉβ€˜(π‘”β€˜π‘₯)))
5442ffnd 6715 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝐹 Fn 𝐴)
55 gsumval3a.s . . . . . . . . . . . . . 14 (πœ‘ β†’ π‘Š βŠ† 𝐴)
5655adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ π‘Š βŠ† 𝐴)
5751, 56fssd 6732 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝑔:(1...(β™―β€˜π‘Š))⟢𝐴)
5857ffvelcdmda 7083 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘₯ ∈ (1...(β™―β€˜π‘Š))) β†’ (π‘”β€˜π‘₯) ∈ 𝐴)
59 fnfvelrn 7079 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ (π‘”β€˜π‘₯) ∈ 𝐴) β†’ (πΉβ€˜(π‘”β€˜π‘₯)) ∈ ran 𝐹)
6054, 58, 59syl2an2r 683 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘₯ ∈ (1...(β™―β€˜π‘Š))) β†’ (πΉβ€˜(π‘”β€˜π‘₯)) ∈ ran 𝐹)
6153, 60eqeltrd 2833 . . . . . . . . 9 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘₯ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑔)β€˜π‘₯) ∈ ran 𝐹)
62 f1of 6830 . . . . . . . . . . . . . . 15 (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š β†’ 𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š)
6347, 62syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ 𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š)
64 fvco3 6987 . . . . . . . . . . . . . 14 ((𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((◑𝑔 ∘ 𝑓)β€˜π‘˜) = (β—‘π‘”β€˜(π‘“β€˜π‘˜)))
6563, 64sylan 580 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((◑𝑔 ∘ 𝑓)β€˜π‘˜) = (β—‘π‘”β€˜(π‘“β€˜π‘˜)))
6665fveq2d 6892 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ (π‘”β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜)) = (π‘”β€˜(β—‘π‘”β€˜(π‘“β€˜π‘˜))))
6763ffvelcdmda 7083 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ (π‘“β€˜π‘˜) ∈ π‘Š)
68 f1ocnvfv2 7271 . . . . . . . . . . . . 13 ((𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ (π‘“β€˜π‘˜) ∈ π‘Š) β†’ (π‘”β€˜(β—‘π‘”β€˜(π‘“β€˜π‘˜))) = (π‘“β€˜π‘˜))
6944, 67, 68syl2an2r 683 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ (π‘”β€˜(β—‘π‘”β€˜(π‘“β€˜π‘˜))) = (π‘“β€˜π‘˜))
7066, 69eqtr2d 2773 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ (π‘“β€˜π‘˜) = (π‘”β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜)))
7170fveq2d 6892 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ (πΉβ€˜(π‘“β€˜π‘˜)) = (πΉβ€˜(π‘”β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜))))
72 fvco3 6987 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘˜) = (πΉβ€˜(π‘“β€˜π‘˜)))
7363, 72sylan 580 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘˜) = (πΉβ€˜(π‘“β€˜π‘˜)))
74 f1of 6830 . . . . . . . . . . . . 13 ((◑𝑔 ∘ 𝑓):(1...(β™―β€˜π‘Š))–1-1-ontoβ†’(1...(β™―β€˜π‘Š)) β†’ (◑𝑔 ∘ 𝑓):(1...(β™―β€˜π‘Š))⟢(1...(β™―β€˜π‘Š)))
7549, 74syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ (◑𝑔 ∘ 𝑓):(1...(β™―β€˜π‘Š))⟢(1...(β™―β€˜π‘Š)))
7675ffvelcdmda 7083 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((◑𝑔 ∘ 𝑓)β€˜π‘˜) ∈ (1...(β™―β€˜π‘Š)))
77 fvco3 6987 . . . . . . . . . . 11 ((𝑔:(1...(β™―β€˜π‘Š))⟢𝐴 ∧ ((◑𝑔 ∘ 𝑓)β€˜π‘˜) ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑔)β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜)) = (πΉβ€˜(π‘”β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜))))
7857, 76, 77syl2an2r 683 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑔)β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜)) = (πΉβ€˜(π‘”β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜))))
7971, 73, 783eqtr4d 2782 . . . . . . . . 9 (((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) ∧ π‘˜ ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘˜) = ((𝐹 ∘ 𝑔)β€˜((◑𝑔 ∘ 𝑓)β€˜π‘˜)))
8026, 34, 36, 40, 43, 49, 61, 79seqf1o 14005 . . . . . . . 8 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))
81 eqeq12 2749 . . . . . . . 8 ((π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š))) β†’ (π‘₯ = 𝑦 ↔ (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š))))
8280, 81syl5ibrcom 246 . . . . . . 7 ((πœ‘ ∧ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)) β†’ ((π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š))) β†’ π‘₯ = 𝑦))
8382expimpd 454 . . . . . 6 (πœ‘ β†’ (((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š) ∧ (π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) β†’ π‘₯ = 𝑦))
8419, 83biimtrrid 242 . . . . 5 (πœ‘ β†’ (((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) β†’ π‘₯ = 𝑦))
8584exlimdvv 1937 . . . 4 (πœ‘ β†’ (βˆƒπ‘“βˆƒπ‘”((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) β†’ π‘₯ = 𝑦))
8618, 85biimtrrid 242 . . 3 (πœ‘ β†’ ((βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ βˆƒπ‘”(𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) β†’ π‘₯ = 𝑦))
8786alrimivv 1931 . 2 (πœ‘ β†’ βˆ€π‘₯βˆ€π‘¦((βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ βˆƒπ‘”(𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) β†’ π‘₯ = 𝑦))
88 eqeq1 2736 . . . . . 6 (π‘₯ = 𝑦 β†’ (π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ↔ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))))
8988anbi2d 629 . . . . 5 (π‘₯ = 𝑦 β†’ ((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)))))
9089exbidv 1924 . . . 4 (π‘₯ = 𝑦 β†’ (βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)))))
91 f1oeq1 6818 . . . . . 6 (𝑓 = 𝑔 β†’ (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ↔ 𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š))
92 coeq2 5856 . . . . . . . . 9 (𝑓 = 𝑔 β†’ (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔))
9392seqeq3d 13970 . . . . . . . 8 (𝑓 = 𝑔 β†’ seq1( + , (𝐹 ∘ 𝑓)) = seq1( + , (𝐹 ∘ 𝑔)))
9493fveq1d 6890 . . . . . . 7 (𝑓 = 𝑔 β†’ (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))
9594eqeq2d 2743 . . . . . 6 (𝑓 = 𝑔 β†’ (𝑦 = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š)) ↔ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š))))
9691, 95anbi12d 631 . . . . 5 (𝑓 = 𝑔 β†’ ((𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ (𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))))
9796cbvexvw 2040 . . . 4 (βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘”(𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š))))
9890, 97bitrdi 286 . . 3 (π‘₯ = 𝑦 β†’ (βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ βˆƒπ‘”(𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))))
9998eu4 2611 . 2 (βˆƒ!π‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ↔ (βˆƒπ‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ βˆ€π‘₯βˆ€π‘¦((βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))) ∧ βˆƒπ‘”(𝑔:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))β€˜(β™―β€˜π‘Š)))) β†’ π‘₯ = 𝑦)))
10017, 87, 99sylanbrc 583 1 (πœ‘ β†’ βˆƒ!π‘₯βˆƒπ‘“(𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š ∧ π‘₯ = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∨ wo 845   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆƒ!weu 2562   β‰  wne 2940   βŠ† wss 3947  βˆ…c0 4321  β—‘ccnv 5674  ran crn 5676   ∘ ccom 5679   Fn wfn 6535  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  1c1 11107  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962  β™―chash 14286  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Mndcmnd 18621  Cntzccntz 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-cntz 19175
This theorem is referenced by:  gsumval3lem2  19768
  Copyright terms: Public domain W3C validator