Step | Hyp | Ref
| Expression |
1 | | gsumval3a.n |
. . . . . 6
⊢ (𝜑 → 𝑊 ≠ ∅) |
2 | 1 | neneqd 2948 |
. . . . 5
⊢ (𝜑 → ¬ 𝑊 = ∅) |
3 | | gsumval3a.t |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Fin) |
4 | | fz1f1o 15422 |
. . . . . . 7
⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨
((♯‘𝑊) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
6 | 5 | ord 861 |
. . . . 5
⊢ (𝜑 → (¬ 𝑊 = ∅ → ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
7 | 2, 6 | mpd 15 |
. . . 4
⊢ (𝜑 → ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
8 | 7 | simprd 496 |
. . 3
⊢ (𝜑 → ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
9 | | excom 2162 |
. . . 4
⊢
(∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |
10 | | exancom 1864 |
. . . . . 6
⊢
(∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑥(𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
11 | | fvex 6787 |
. . . . . . 7
⊢ (seq1(
+ ,
(𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∈ V |
12 | | biidd 261 |
. . . . . . 7
⊢ (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
13 | 11, 12 | ceqsexv 3479 |
. . . . . 6
⊢
(∃𝑥(𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
14 | 10, 13 | bitri 274 |
. . . . 5
⊢
(∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
15 | 14 | exbii 1850 |
. . . 4
⊢
(∃𝑓∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
16 | 9, 15 | bitri 274 |
. . 3
⊢
(∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
17 | 8, 16 | sylibr 233 |
. 2
⊢ (𝜑 → ∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |
18 | | exdistrv 1959 |
. . . 4
⊢
(∃𝑓∃𝑔((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) ↔ (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
19 | | an4 653 |
. . . . . 6
⊢ (((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊) ∧ (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) ↔ ((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
20 | | gsumval3.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Mnd) |
21 | 20 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐺 ∈ Mnd) |
22 | | gsumval3.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐺) |
23 | | gsumval3.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐺) |
24 | 22, 23 | mndcl 18393 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
25 | 24 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
26 | 21, 25 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
27 | | gsumval3.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
28 | 27 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
29 | 28 | sselda 3921 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ ran 𝐹) → 𝑥 ∈ (𝑍‘ran 𝐹)) |
30 | 29 | adantrr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) → 𝑥 ∈ (𝑍‘ran 𝐹)) |
31 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) → 𝑦 ∈ ran 𝐹) |
32 | | gsumval3.z |
. . . . . . . . . . 11
⊢ 𝑍 = (Cntz‘𝐺) |
33 | 23, 32 | cntzi 18935 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑍‘ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
34 | 30, 31, 33 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
35 | 22, 23 | mndass 18394 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
36 | 21, 35 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
37 | 7 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ) |
38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (♯‘𝑊) ∈
ℕ) |
39 | | nnuz 12621 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
40 | 38, 39 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (♯‘𝑊) ∈
(ℤ≥‘1)) |
41 | | gsumval3.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
42 | 41 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐹:𝐴⟶𝐵) |
43 | 42 | frnd 6608 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran 𝐹 ⊆ 𝐵) |
44 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊) |
45 | | f1ocnv 6728 |
. . . . . . . . . . 11
⊢ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 → ◡𝑔:𝑊–1-1-onto→(1...(♯‘𝑊))) |
46 | 44, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ◡𝑔:𝑊–1-1-onto→(1...(♯‘𝑊))) |
47 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
48 | | f1oco 6739 |
. . . . . . . . . 10
⊢ ((◡𝑔:𝑊–1-1-onto→(1...(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊))) |
49 | 46, 47, 48 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊))) |
50 | | f1of 6716 |
. . . . . . . . . . . 12
⊢ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑔:(1...(♯‘𝑊))⟶𝑊) |
51 | 44, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑔:(1...(♯‘𝑊))⟶𝑊) |
52 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑔:(1...(♯‘𝑊))⟶𝑊 ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘𝑥) = (𝐹‘(𝑔‘𝑥))) |
53 | 51, 52 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘𝑥) = (𝐹‘(𝑔‘𝑥))) |
54 | 42 | ffnd 6601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐹 Fn 𝐴) |
55 | | gsumval3a.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑊 ⊆ 𝐴) |
56 | 55 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑊 ⊆ 𝐴) |
57 | 51, 56 | fssd 6618 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑔:(1...(♯‘𝑊))⟶𝐴) |
58 | 57 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → (𝑔‘𝑥) ∈ 𝐴) |
59 | | fnfvelrn 6958 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ (𝑔‘𝑥) ∈ 𝐴) → (𝐹‘(𝑔‘𝑥)) ∈ ran 𝐹) |
60 | 54, 58, 59 | syl2an2r 682 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → (𝐹‘(𝑔‘𝑥)) ∈ ran 𝐹) |
61 | 53, 60 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘𝑥) ∈ ran 𝐹) |
62 | | f1of 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(♯‘𝑊))⟶𝑊) |
63 | 47, 62 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))⟶𝑊) |
64 | | fvco3 6867 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(♯‘𝑊))⟶𝑊 ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((◡𝑔 ∘ 𝑓)‘𝑘) = (◡𝑔‘(𝑓‘𝑘))) |
65 | 63, 64 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((◡𝑔 ∘ 𝑓)‘𝑘) = (◡𝑔‘(𝑓‘𝑘))) |
66 | 65 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)) = (𝑔‘(◡𝑔‘(𝑓‘𝑘)))) |
67 | 63 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑓‘𝑘) ∈ 𝑊) |
68 | | f1ocnvfv2 7149 |
. . . . . . . . . . . . 13
⊢ ((𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ (𝑓‘𝑘) ∈ 𝑊) → (𝑔‘(◡𝑔‘(𝑓‘𝑘))) = (𝑓‘𝑘)) |
69 | 44, 67, 68 | syl2an2r 682 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑔‘(◡𝑔‘(𝑓‘𝑘))) = (𝑓‘𝑘)) |
70 | 66, 69 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑓‘𝑘) = (𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘))) |
71 | 70 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝐹‘(𝑓‘𝑘)) = (𝐹‘(𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)))) |
72 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝑊))⟶𝑊 ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = (𝐹‘(𝑓‘𝑘))) |
73 | 63, 72 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = (𝐹‘(𝑓‘𝑘))) |
74 | | f1of 6716 |
. . . . . . . . . . . . 13
⊢ ((◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊)) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))⟶(1...(♯‘𝑊))) |
75 | 49, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))⟶(1...(♯‘𝑊))) |
76 | 75 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((◡𝑔 ∘ 𝑓)‘𝑘) ∈ (1...(♯‘𝑊))) |
77 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑔:(1...(♯‘𝑊))⟶𝐴 ∧ ((◡𝑔 ∘ 𝑓)‘𝑘) ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘((◡𝑔 ∘ 𝑓)‘𝑘)) = (𝐹‘(𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)))) |
78 | 57, 76, 77 | syl2an2r 682 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘((◡𝑔 ∘ 𝑓)‘𝑘)) = (𝐹‘(𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)))) |
79 | 71, 73, 78 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = ((𝐹 ∘ 𝑔)‘((◡𝑔 ∘ 𝑓)‘𝑘))) |
80 | 26, 34, 36, 40, 43, 49, 61, 79 | seqf1o 13764 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) |
81 | | eqeq12 2755 |
. . . . . . . 8
⊢ ((𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) → (𝑥 = 𝑦 ↔ (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) |
82 | 80, 81 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) → 𝑥 = 𝑦)) |
83 | 82 | expimpd 454 |
. . . . . 6
⊢ (𝜑 → (((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊) ∧ (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
84 | 19, 83 | syl5bir 242 |
. . . . 5
⊢ (𝜑 → (((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
85 | 84 | exlimdvv 1937 |
. . . 4
⊢ (𝜑 → (∃𝑓∃𝑔((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
86 | 18, 85 | syl5bir 242 |
. . 3
⊢ (𝜑 → ((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
87 | 86 | alrimivv 1931 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑦((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
88 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |
89 | 88 | anbi2d 629 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) |
90 | 89 | exbidv 1924 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) |
91 | | f1oeq1 6704 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ↔ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
92 | | coeq2 5767 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) |
93 | 92 | seqeq3d 13729 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → seq1( + , (𝐹 ∘ 𝑓)) = seq1( + , (𝐹 ∘ 𝑔))) |
94 | 93 | fveq1d 6776 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) |
95 | 94 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) |
96 | 91, 95 | anbi12d 631 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
97 | 96 | cbvexvw 2040 |
. . . 4
⊢
(∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) |
98 | 90, 97 | bitrdi 287 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
99 | 98 | eu4 2617 |
. 2
⊢
(∃!𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ (∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∀𝑥∀𝑦((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))) |
100 | 17, 87, 99 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |