| Step | Hyp | Ref
| Expression |
| 1 | | gsumval3a.n |
. . . . . 6
⊢ (𝜑 → 𝑊 ≠ ∅) |
| 2 | 1 | neneqd 2938 |
. . . . 5
⊢ (𝜑 → ¬ 𝑊 = ∅) |
| 3 | | gsumval3a.t |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 4 | | fz1f1o 15731 |
. . . . . . 7
⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨
((♯‘𝑊) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
| 6 | 5 | ord 864 |
. . . . 5
⊢ (𝜑 → (¬ 𝑊 = ∅ → ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
| 7 | 2, 6 | mpd 15 |
. . . 4
⊢ (𝜑 → ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
| 8 | 7 | simprd 495 |
. . 3
⊢ (𝜑 → ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 9 | | excom 2163 |
. . . 4
⊢
(∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |
| 10 | | exancom 1861 |
. . . . . 6
⊢
(∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑥(𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
| 11 | | fvex 6894 |
. . . . . . 7
⊢ (seq1(
+ ,
(𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∈ V |
| 12 | | biidd 262 |
. . . . . . 7
⊢ (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
| 13 | 11, 12 | ceqsexv 3516 |
. . . . . 6
⊢
(∃𝑥(𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 14 | 10, 13 | bitri 275 |
. . . . 5
⊢
(∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 15 | 14 | exbii 1848 |
. . . 4
⊢
(∃𝑓∃𝑥(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 16 | 9, 15 | bitri 275 |
. . 3
⊢
(∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 17 | 8, 16 | sylibr 234 |
. 2
⊢ (𝜑 → ∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |
| 18 | | exdistrv 1955 |
. . . 4
⊢
(∃𝑓∃𝑔((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) ↔ (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
| 19 | | an4 656 |
. . . . . 6
⊢ (((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊) ∧ (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) ↔ ((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
| 20 | | gsumval3.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐺 ∈ Mnd) |
| 22 | | gsumval3.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐺) |
| 23 | | gsumval3.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐺) |
| 24 | 22, 23 | mndcl 18725 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 25 | 24 | 3expb 1120 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 26 | 21, 25 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 27 | | gsumval3.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 29 | 28 | sselda 3963 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ ran 𝐹) → 𝑥 ∈ (𝑍‘ran 𝐹)) |
| 30 | 29 | adantrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) → 𝑥 ∈ (𝑍‘ran 𝐹)) |
| 31 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) → 𝑦 ∈ ran 𝐹) |
| 32 | | gsumval3.z |
. . . . . . . . . . 11
⊢ 𝑍 = (Cntz‘𝐺) |
| 33 | 23, 32 | cntzi 19317 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑍‘ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 34 | 30, 31, 33 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 35 | 22, 23 | mndass 18726 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 36 | 21, 35 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 37 | 7 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ) |
| 38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (♯‘𝑊) ∈
ℕ) |
| 39 | | nnuz 12900 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
| 40 | 38, 39 | eleqtrdi 2845 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (♯‘𝑊) ∈
(ℤ≥‘1)) |
| 41 | | gsumval3.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐹:𝐴⟶𝐵) |
| 43 | 42 | frnd 6719 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran 𝐹 ⊆ 𝐵) |
| 44 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 45 | | f1ocnv 6835 |
. . . . . . . . . . 11
⊢ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 → ◡𝑔:𝑊–1-1-onto→(1...(♯‘𝑊))) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ◡𝑔:𝑊–1-1-onto→(1...(♯‘𝑊))) |
| 47 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
| 48 | | f1oco 6846 |
. . . . . . . . . 10
⊢ ((◡𝑔:𝑊–1-1-onto→(1...(♯‘𝑊)) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊))) |
| 49 | 46, 47, 48 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊))) |
| 50 | | f1of 6823 |
. . . . . . . . . . . 12
⊢ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑔:(1...(♯‘𝑊))⟶𝑊) |
| 51 | 44, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑔:(1...(♯‘𝑊))⟶𝑊) |
| 52 | | fvco3 6983 |
. . . . . . . . . . 11
⊢ ((𝑔:(1...(♯‘𝑊))⟶𝑊 ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘𝑥) = (𝐹‘(𝑔‘𝑥))) |
| 53 | 51, 52 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘𝑥) = (𝐹‘(𝑔‘𝑥))) |
| 54 | 42 | ffnd 6712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐹 Fn 𝐴) |
| 55 | | gsumval3a.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑊 ⊆ 𝐴) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑊 ⊆ 𝐴) |
| 57 | 51, 56 | fssd 6728 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑔:(1...(♯‘𝑊))⟶𝐴) |
| 58 | 57 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → (𝑔‘𝑥) ∈ 𝐴) |
| 59 | | fnfvelrn 7075 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ (𝑔‘𝑥) ∈ 𝐴) → (𝐹‘(𝑔‘𝑥)) ∈ ran 𝐹) |
| 60 | 54, 58, 59 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → (𝐹‘(𝑔‘𝑥)) ∈ ran 𝐹) |
| 61 | 53, 60 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘𝑥) ∈ ran 𝐹) |
| 62 | | f1of 6823 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(♯‘𝑊))⟶𝑊) |
| 63 | 47, 62 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))⟶𝑊) |
| 64 | | fvco3 6983 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(♯‘𝑊))⟶𝑊 ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((◡𝑔 ∘ 𝑓)‘𝑘) = (◡𝑔‘(𝑓‘𝑘))) |
| 65 | 63, 64 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((◡𝑔 ∘ 𝑓)‘𝑘) = (◡𝑔‘(𝑓‘𝑘))) |
| 66 | 65 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)) = (𝑔‘(◡𝑔‘(𝑓‘𝑘)))) |
| 67 | 63 | ffvelcdmda 7079 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑓‘𝑘) ∈ 𝑊) |
| 68 | | f1ocnvfv2 7275 |
. . . . . . . . . . . . 13
⊢ ((𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ (𝑓‘𝑘) ∈ 𝑊) → (𝑔‘(◡𝑔‘(𝑓‘𝑘))) = (𝑓‘𝑘)) |
| 69 | 44, 67, 68 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑔‘(◡𝑔‘(𝑓‘𝑘))) = (𝑓‘𝑘)) |
| 70 | 66, 69 | eqtr2d 2772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝑓‘𝑘) = (𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘))) |
| 71 | 70 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (𝐹‘(𝑓‘𝑘)) = (𝐹‘(𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)))) |
| 72 | | fvco3 6983 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝑊))⟶𝑊 ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = (𝐹‘(𝑓‘𝑘))) |
| 73 | 63, 72 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = (𝐹‘(𝑓‘𝑘))) |
| 74 | | f1of 6823 |
. . . . . . . . . . . . 13
⊢ ((◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(1...(♯‘𝑊)) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))⟶(1...(♯‘𝑊))) |
| 75 | 49, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (◡𝑔 ∘ 𝑓):(1...(♯‘𝑊))⟶(1...(♯‘𝑊))) |
| 76 | 75 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((◡𝑔 ∘ 𝑓)‘𝑘) ∈ (1...(♯‘𝑊))) |
| 77 | | fvco3 6983 |
. . . . . . . . . . 11
⊢ ((𝑔:(1...(♯‘𝑊))⟶𝐴 ∧ ((◡𝑔 ∘ 𝑓)‘𝑘) ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘((◡𝑔 ∘ 𝑓)‘𝑘)) = (𝐹‘(𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)))) |
| 78 | 57, 76, 77 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑔)‘((◡𝑔 ∘ 𝑓)‘𝑘)) = (𝐹‘(𝑔‘((◡𝑔 ∘ 𝑓)‘𝑘)))) |
| 79 | 71, 73, 78 | 3eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = ((𝐹 ∘ 𝑔)‘((◡𝑔 ∘ 𝑓)‘𝑘))) |
| 80 | 26, 34, 36, 40, 43, 49, 61, 79 | seqf1o 14066 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) |
| 81 | | eqeq12 2753 |
. . . . . . . 8
⊢ ((𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) → (𝑥 = 𝑦 ↔ (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) |
| 82 | 80, 81 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) → 𝑥 = 𝑦)) |
| 83 | 82 | expimpd 453 |
. . . . . 6
⊢ (𝜑 → (((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊) ∧ (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
| 84 | 19, 83 | biimtrrid 243 |
. . . . 5
⊢ (𝜑 → (((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
| 85 | 84 | exlimdvv 1934 |
. . . 4
⊢ (𝜑 → (∃𝑓∃𝑔((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
| 86 | 18, 85 | biimtrrid 243 |
. . 3
⊢ (𝜑 → ((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
| 87 | 86 | alrimivv 1928 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑦((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦)) |
| 88 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |
| 89 | 88 | anbi2d 630 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) |
| 90 | 89 | exbidv 1921 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) |
| 91 | | f1oeq1 6811 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ↔ 𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊)) |
| 92 | | coeq2 5843 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) |
| 93 | 92 | seqeq3d 14032 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → seq1( + , (𝐹 ∘ 𝑓)) = seq1( + , (𝐹 ∘ 𝑔))) |
| 94 | 93 | fveq1d 6883 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))) |
| 95 | 94 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) |
| 96 | 91, 95 | anbi12d 632 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ (𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
| 97 | 96 | cbvexvw 2037 |
. . . 4
⊢
(∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) |
| 98 | 90, 97 | bitrdi 287 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊))))) |
| 99 | 98 | eu4 2615 |
. 2
⊢
(∃!𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ↔ (∃𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∀𝑥∀𝑦((∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) ∧ ∃𝑔(𝑔:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑦 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘𝑊)))) → 𝑥 = 𝑦))) |
| 100 | 17, 87, 99 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) |