Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeu Structured version   Visualization version   GIF version

Theorem omeu 7932
 Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeu ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem omeu
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeulem1 7929 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
2 opex 5153 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
32isseti 3426 . . . . . . . 8 𝑧 𝑧 = ⟨𝑥, 𝑦
4 19.41v 2048 . . . . . . . 8 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
53, 4mpbiran 700 . . . . . . 7 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
65rexbii 3251 . . . . . 6 (∃𝑦𝐴𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
7 rexcom4 3442 . . . . . 6 (∃𝑦𝐴𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
86, 7bitr3i 269 . . . . 5 (∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
98rexbii 3251 . . . 4 (∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ∃𝑥 ∈ On ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
10 rexcom4 3442 . . . 4 (∃𝑥 ∈ On ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
119, 10bitri 267 . . 3 (∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
121, 11sylib 210 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
13 simp2rl 1327 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑧 = ⟨𝑥, 𝑦⟩)
14 simp3rl 1331 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑡 = ⟨𝑟, 𝑠⟩)
15 simp2rr 1328 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)
16 simp3rr 1332 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)
1715, 16eqtr4d 2864 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠))
18 simp11 1264 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝐴 ∈ On)
19 simp13 1266 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝐴 ≠ ∅)
20 simp2ll 1325 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑥 ∈ On)
21 simp2lr 1326 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑦𝐴)
22 simp3ll 1329 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑟 ∈ On)
23 simp3lr 1330 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑠𝐴)
24 omopth2 7931 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑟 ∈ On ∧ 𝑠𝐴)) → (((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠) ↔ (𝑥 = 𝑟𝑦 = 𝑠)))
2518, 19, 20, 21, 22, 23, 24syl222anc 1509 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → (((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠) ↔ (𝑥 = 𝑟𝑦 = 𝑠)))
2617, 25mpbid 224 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → (𝑥 = 𝑟𝑦 = 𝑠))
27 opeq12 4625 . . . . . . . . . . . . 13 ((𝑥 = 𝑟𝑦 = 𝑠) → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
2914, 28eqtr4d 2864 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑡 = ⟨𝑥, 𝑦⟩)
3013, 29eqtr4d 2864 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))) → 𝑧 = 𝑡)
31303expia 1154 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))) → (((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡))
3231exp4b 423 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡))))
3332expd 406 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝐴) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡)))))
3433rexlimdvv 3247 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡))))
3534imp 397 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡)))
3635rexlimdvv 3247 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) → (∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) → 𝑧 = 𝑡))
3736expimpd 447 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡))
3837alrimivv 2027 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∀𝑧𝑡((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡))
39 opeq1 4623 . . . . . . 7 (𝑥 = 𝑟 → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑦⟩)
4039eqeq2d 2835 . . . . . 6 (𝑥 = 𝑟 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑟, 𝑦⟩))
41 oveq2 6913 . . . . . . . 8 (𝑥 = 𝑟 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑟))
4241oveq1d 6920 . . . . . . 7 (𝑥 = 𝑟 → ((𝐴 ·o 𝑥) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑦))
4342eqeq1d 2827 . . . . . 6 (𝑥 = 𝑟 → (((𝐴 ·o 𝑥) +o 𝑦) = 𝐵 ↔ ((𝐴 ·o 𝑟) +o 𝑦) = 𝐵))
4440, 43anbi12d 624 . . . . 5 (𝑥 = 𝑟 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ (𝑧 = ⟨𝑟, 𝑦⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑦) = 𝐵)))
45 opeq2 4624 . . . . . . 7 (𝑦 = 𝑠 → ⟨𝑟, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
4645eqeq2d 2835 . . . . . 6 (𝑦 = 𝑠 → (𝑧 = ⟨𝑟, 𝑦⟩ ↔ 𝑧 = ⟨𝑟, 𝑠⟩))
47 oveq2 6913 . . . . . . 7 (𝑦 = 𝑠 → ((𝐴 ·o 𝑟) +o 𝑦) = ((𝐴 ·o 𝑟) +o 𝑠))
4847eqeq1d 2827 . . . . . 6 (𝑦 = 𝑠 → (((𝐴 ·o 𝑟) +o 𝑦) = 𝐵 ↔ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))
4946, 48anbi12d 624 . . . . 5 (𝑦 = 𝑠 → ((𝑧 = ⟨𝑟, 𝑦⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑦) = 𝐵) ↔ (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
5044, 49cbvrex2v 3392 . . . 4 (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵))
51 eqeq1 2829 . . . . . 6 (𝑧 = 𝑡 → (𝑧 = ⟨𝑟, 𝑠⟩ ↔ 𝑡 = ⟨𝑟, 𝑠⟩))
5251anbi1d 623 . . . . 5 (𝑧 = 𝑡 → ((𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) ↔ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
53522rexbidv 3267 . . . 4 (𝑧 = 𝑡 → (∃𝑟 ∈ On ∃𝑠𝐴 (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
5450, 53syl5bb 275 . . 3 (𝑧 = 𝑡 → (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)))
5554eu4 2703 . 2 (∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ↔ (∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∀𝑧𝑡((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·o 𝑟) +o 𝑠) = 𝐵)) → 𝑧 = 𝑡)))
5612, 38, 55sylanbrc 578 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1111  ∀wal 1654   = wceq 1656  ∃wex 1878   ∈ wcel 2164  ∃!weu 2639   ≠ wne 2999  ∃wrex 3118  ∅c0 4144  ⟨cop 4403  Oncon0 5963  (class class class)co 6905   +o coa 7823   ·o comu 7824 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-omul 7831 This theorem is referenced by:  oeeui  7949  omxpenlem  8330
 Copyright terms: Public domain W3C validator