MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneu Structured version   Visualization version   GIF version

Theorem psgneu 18852
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgneu (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Distinct variable groups:   𝑤,𝑠,𝐺   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠,𝑤   𝐷,𝑠,𝑤

Proof of Theorem psgneu
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐷)
2 psgnval.n . . . . . . . . 9 𝑁 = (pmSgn‘𝐷)
3 eqid 2736 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3psgneldm 18849 . . . . . . . 8 (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ (Base‘𝐺) ∧ dom (𝑃 ∖ I ) ∈ Fin))
54simplbi 501 . . . . . . 7 (𝑃 ∈ dom 𝑁𝑃 ∈ (Base‘𝐺))
61, 3elbasfv 16727 . . . . . . 7 (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V)
75, 6syl 17 . . . . . 6 (𝑃 ∈ dom 𝑁𝐷 ∈ V)
8 psgnval.t . . . . . . 7 𝑇 = ran (pmTrsp‘𝐷)
91, 8, 2psgneldm2 18850 . . . . . 6 (𝐷 ∈ V → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
107, 9syl 17 . . . . 5 (𝑃 ∈ dom 𝑁 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
1110ibi 270 . . . 4 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))
12 simpr 488 . . . . . . 7 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → 𝑃 = (𝐺 Σg 𝑤))
13 eqid 2736 . . . . . . 7 (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))
14 ovex 7224 . . . . . . . 8 (-1↑(♯‘𝑤)) ∈ V
15 eqeq1 2740 . . . . . . . . 9 (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))))
1615anbi2d 632 . . . . . . . 8 (𝑠 = (-1↑(♯‘𝑤)) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤)))))
1714, 16spcev 3511 . . . . . . 7 ((𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1812, 13, 17sylancl 589 . . . . . 6 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1918ex 416 . . . . 5 ((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) → (𝑃 = (𝐺 Σg 𝑤) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2019reximdva 3183 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤) → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2111, 20mpd 15 . . 3 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
22 rexcom4 3162 . . 3 (∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
2321, 22sylib 221 . 2 (𝑃 ∈ dom 𝑁 → ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
24 reeanv 3269 . . . 4 (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) ↔ (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
257ad2antrr 726 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝐷 ∈ V)
26 simplrl 777 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑤 ∈ Word 𝑇)
27 simplrr 778 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑥 ∈ Word 𝑇)
28 simprll 779 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑤))
29 simprrl 781 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑥))
3028, 29eqtr3d 2773 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
311, 8, 25, 26, 27, 30psgnuni 18845 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
32 simprlr 780 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = (-1↑(♯‘𝑤)))
33 simprrr 782 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑡 = (-1↑(♯‘𝑥)))
3431, 32, 333eqtr4d 2781 . . . . . 6 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = 𝑡)
3534ex 416 . . . . 5 ((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) → (((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3635rexlimdvva 3203 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3724, 36syl5bir 246 . . 3 (𝑃 ∈ dom 𝑁 → ((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3837alrimivv 1936 . 2 (𝑃 ∈ dom 𝑁 → ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
39 eqeq1 2740 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑤))))
4039anbi2d 632 . . . . 5 (𝑠 = 𝑡 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
4140rexbidv 3206 . . . 4 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
42 oveq2 7199 . . . . . . 7 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
4342eqeq2d 2747 . . . . . 6 (𝑤 = 𝑥 → (𝑃 = (𝐺 Σg 𝑤) ↔ 𝑃 = (𝐺 Σg 𝑥)))
44 fveq2 6695 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
4544oveq2d 7207 . . . . . . 7 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
4645eqeq2d 2747 . . . . . 6 (𝑤 = 𝑥 → (𝑡 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑥))))
4743, 46anbi12d 634 . . . . 5 (𝑤 = 𝑥 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
4847cbvrexvw 3349 . . . 4 (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))
4941, 48bitrdi 290 . . 3 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
5049eu4 2616 . 2 (∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡)))
5123, 38, 50sylanbrc 586 1 (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wex 1787  wcel 2112  ∃!weu 2567  wrex 3052  Vcvv 3398  cdif 3850   I cid 5439  dom cdm 5536  ran crn 5537  cfv 6358  (class class class)co 7191  Fincfn 8604  1c1 10695  -cneg 11028  cexp 13600  chash 13861  Word cword 14034  Basecbs 16666   Σg cgsu 16899  SymGrpcsymg 18713  pmTrspcpmtr 18787  pmSgncpsgn 18835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-word 14035  df-lsw 14083  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-splice 14280  df-reverse 14289  df-s2 14378  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-tset 16768  df-0g 16900  df-gsum 16901  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-efmnd 18250  df-grp 18322  df-minusg 18323  df-subg 18494  df-ghm 18574  df-gim 18617  df-oppg 18692  df-symg 18714  df-pmtr 18788  df-psgn 18837
This theorem is referenced by:  psgnvali  18854  psgnvalii  18855  psgnfieu  18864
  Copyright terms: Public domain W3C validator