MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneu Structured version   Visualization version   GIF version

Theorem psgneu 18408
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgneu (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Distinct variable groups:   𝑤,𝑠,𝐺   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠,𝑤   𝐷,𝑠,𝑤

Proof of Theorem psgneu
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐷)
2 psgnval.n . . . . . . . . 9 𝑁 = (pmSgn‘𝐷)
3 eqid 2772 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3psgneldm 18405 . . . . . . . 8 (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ (Base‘𝐺) ∧ dom (𝑃 ∖ I ) ∈ Fin))
54simplbi 490 . . . . . . 7 (𝑃 ∈ dom 𝑁𝑃 ∈ (Base‘𝐺))
61, 3elbasfv 16398 . . . . . . 7 (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V)
75, 6syl 17 . . . . . 6 (𝑃 ∈ dom 𝑁𝐷 ∈ V)
8 psgnval.t . . . . . . 7 𝑇 = ran (pmTrsp‘𝐷)
91, 8, 2psgneldm2 18406 . . . . . 6 (𝐷 ∈ V → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
107, 9syl 17 . . . . 5 (𝑃 ∈ dom 𝑁 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
1110ibi 259 . . . 4 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))
12 simpr 477 . . . . . . 7 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → 𝑃 = (𝐺 Σg 𝑤))
13 eqid 2772 . . . . . . 7 (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))
14 ovex 7006 . . . . . . . 8 (-1↑(♯‘𝑤)) ∈ V
15 eqeq1 2776 . . . . . . . . 9 (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))))
1615anbi2d 619 . . . . . . . 8 (𝑠 = (-1↑(♯‘𝑤)) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤)))))
1714, 16spcev 3519 . . . . . . 7 ((𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1812, 13, 17sylancl 577 . . . . . 6 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1918ex 405 . . . . 5 ((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) → (𝑃 = (𝐺 Σg 𝑤) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2019reximdva 3213 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤) → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2111, 20mpd 15 . . 3 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
22 rexcom4 3190 . . 3 (∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
2321, 22sylib 210 . 2 (𝑃 ∈ dom 𝑁 → ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
24 reeanv 3302 . . . 4 (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) ↔ (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
257ad2antrr 713 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝐷 ∈ V)
26 simplrl 764 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑤 ∈ Word 𝑇)
27 simplrr 765 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑥 ∈ Word 𝑇)
28 simprll 766 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑤))
29 simprrl 768 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑥))
3028, 29eqtr3d 2810 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
311, 8, 25, 26, 27, 30psgnuni 18401 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
32 simprlr 767 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = (-1↑(♯‘𝑤)))
33 simprrr 769 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑡 = (-1↑(♯‘𝑥)))
3431, 32, 333eqtr4d 2818 . . . . . 6 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = 𝑡)
3534ex 405 . . . . 5 ((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) → (((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3635rexlimdvva 3233 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3724, 36syl5bir 235 . . 3 (𝑃 ∈ dom 𝑁 → ((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3837alrimivv 1887 . 2 (𝑃 ∈ dom 𝑁 → ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
39 eqeq1 2776 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑤))))
4039anbi2d 619 . . . . 5 (𝑠 = 𝑡 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
4140rexbidv 3236 . . . 4 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
42 oveq2 6982 . . . . . . 7 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
4342eqeq2d 2782 . . . . . 6 (𝑤 = 𝑥 → (𝑃 = (𝐺 Σg 𝑤) ↔ 𝑃 = (𝐺 Σg 𝑥)))
44 fveq2 6496 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
4544oveq2d 6990 . . . . . . 7 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
4645eqeq2d 2782 . . . . . 6 (𝑤 = 𝑥 → (𝑡 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑥))))
4743, 46anbi12d 621 . . . . 5 (𝑤 = 𝑥 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
4847cbvrexv 3378 . . . 4 (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))
4941, 48syl6bb 279 . . 3 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
5049eu4 2649 . 2 (∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡)))
5123, 38, 50sylanbrc 575 1 (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1505   = wceq 1507  wex 1742  wcel 2050  ∃!weu 2583  wrex 3083  Vcvv 3409  cdif 3820   I cid 5307  dom cdm 5403  ran crn 5404  cfv 6185  (class class class)co 6974  Fincfn 8304  1c1 10334  -cneg 10669  cexp 13242  chash 13503  Word cword 13670  Basecbs 16337   Σg cgsu 16568  SymGrpcsymg 18278  pmTrspcpmtr 18342  pmSgncpsgn 18390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-tpos 7693  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-xnn0 11778  df-z 11792  df-uz 12057  df-rp 12203  df-fz 12707  df-fzo 12848  df-seq 13183  df-exp 13243  df-hash 13504  df-word 13671  df-lsw 13724  df-concat 13732  df-s1 13757  df-substr 13802  df-pfx 13851  df-splice 13958  df-reverse 13976  df-s2 14070  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-tset 16438  df-0g 16569  df-gsum 16570  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-submnd 17816  df-grp 17906  df-minusg 17907  df-subg 18072  df-ghm 18139  df-gim 18182  df-oppg 18257  df-symg 18279  df-pmtr 18343  df-psgn 18392
This theorem is referenced by:  psgnvali  18410  psgnvalii  18411  psgnfieu  18420
  Copyright terms: Public domain W3C validator