MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneu Structured version   Visualization version   GIF version

Theorem psgneu 19487
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgneu (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Distinct variable groups:   𝑤,𝑠,𝐺   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠,𝑤   𝐷,𝑠,𝑤

Proof of Theorem psgneu
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐷)
2 psgnval.n . . . . . . . . 9 𝑁 = (pmSgn‘𝐷)
3 eqid 2735 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3psgneldm 19484 . . . . . . . 8 (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ (Base‘𝐺) ∧ dom (𝑃 ∖ I ) ∈ Fin))
54simplbi 497 . . . . . . 7 (𝑃 ∈ dom 𝑁𝑃 ∈ (Base‘𝐺))
61, 3elbasfv 17234 . . . . . . 7 (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V)
75, 6syl 17 . . . . . 6 (𝑃 ∈ dom 𝑁𝐷 ∈ V)
8 psgnval.t . . . . . . 7 𝑇 = ran (pmTrsp‘𝐷)
91, 8, 2psgneldm2 19485 . . . . . 6 (𝐷 ∈ V → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
107, 9syl 17 . . . . 5 (𝑃 ∈ dom 𝑁 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
1110ibi 267 . . . 4 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))
12 simpr 484 . . . . . . 7 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → 𝑃 = (𝐺 Σg 𝑤))
13 eqid 2735 . . . . . . 7 (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))
14 ovex 7438 . . . . . . . 8 (-1↑(♯‘𝑤)) ∈ V
15 eqeq1 2739 . . . . . . . . 9 (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))))
1615anbi2d 630 . . . . . . . 8 (𝑠 = (-1↑(♯‘𝑤)) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤)))))
1714, 16spcev 3585 . . . . . . 7 ((𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1812, 13, 17sylancl 586 . . . . . 6 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1918ex 412 . . . . 5 ((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) → (𝑃 = (𝐺 Σg 𝑤) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2019reximdva 3153 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤) → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2111, 20mpd 15 . . 3 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
22 rexcom4 3269 . . 3 (∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
2321, 22sylib 218 . 2 (𝑃 ∈ dom 𝑁 → ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
24 reeanv 3213 . . . 4 (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) ↔ (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
257ad2antrr 726 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝐷 ∈ V)
26 simplrl 776 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑤 ∈ Word 𝑇)
27 simplrr 777 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑥 ∈ Word 𝑇)
28 simprll 778 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑤))
29 simprrl 780 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑥))
3028, 29eqtr3d 2772 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
311, 8, 25, 26, 27, 30psgnuni 19480 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
32 simprlr 779 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = (-1↑(♯‘𝑤)))
33 simprrr 781 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑡 = (-1↑(♯‘𝑥)))
3431, 32, 333eqtr4d 2780 . . . . . 6 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = 𝑡)
3534ex 412 . . . . 5 ((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) → (((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3635rexlimdvva 3198 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3724, 36biimtrrid 243 . . 3 (𝑃 ∈ dom 𝑁 → ((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3837alrimivv 1928 . 2 (𝑃 ∈ dom 𝑁 → ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
39 eqeq1 2739 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑤))))
4039anbi2d 630 . . . . 5 (𝑠 = 𝑡 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
4140rexbidv 3164 . . . 4 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
42 oveq2 7413 . . . . . . 7 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
4342eqeq2d 2746 . . . . . 6 (𝑤 = 𝑥 → (𝑃 = (𝐺 Σg 𝑤) ↔ 𝑃 = (𝐺 Σg 𝑥)))
44 fveq2 6876 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
4544oveq2d 7421 . . . . . . 7 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
4645eqeq2d 2746 . . . . . 6 (𝑤 = 𝑥 → (𝑡 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑥))))
4743, 46anbi12d 632 . . . . 5 (𝑤 = 𝑥 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
4847cbvrexvw 3221 . . . 4 (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))
4941, 48bitrdi 287 . . 3 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
5049eu4 2614 . 2 (∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡)))
5123, 38, 50sylanbrc 583 1 (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  wrex 3060  Vcvv 3459  cdif 3923   I cid 5547  dom cdm 5654  ran crn 5655  cfv 6531  (class class class)co 7405  Fincfn 8959  1c1 11130  -cneg 11467  cexp 14079  chash 14348  Word cword 14531  Basecbs 17228   Σg cgsu 17454  SymGrpcsymg 19350  pmTrspcpmtr 19422  pmSgncpsgn 19470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-reverse 14777  df-s2 14867  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-0g 17455  df-gsum 17456  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-minusg 18920  df-subg 19106  df-ghm 19196  df-gim 19242  df-oppg 19329  df-symg 19351  df-pmtr 19423  df-psgn 19472
This theorem is referenced by:  psgnvali  19489  psgnvalii  19490  psgnfieu  19499
  Copyright terms: Public domain W3C validator