MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneu Structured version   Visualization version   GIF version

Theorem psgneu 19504
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgneu (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Distinct variable groups:   𝑤,𝑠,𝐺   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠,𝑤   𝐷,𝑠,𝑤

Proof of Theorem psgneu
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐷)
2 psgnval.n . . . . . . . . 9 𝑁 = (pmSgn‘𝐷)
3 eqid 2726 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3psgneldm 19501 . . . . . . . 8 (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ (Base‘𝐺) ∧ dom (𝑃 ∖ I ) ∈ Fin))
54simplbi 496 . . . . . . 7 (𝑃 ∈ dom 𝑁𝑃 ∈ (Base‘𝐺))
61, 3elbasfv 17219 . . . . . . 7 (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V)
75, 6syl 17 . . . . . 6 (𝑃 ∈ dom 𝑁𝐷 ∈ V)
8 psgnval.t . . . . . . 7 𝑇 = ran (pmTrsp‘𝐷)
91, 8, 2psgneldm2 19502 . . . . . 6 (𝐷 ∈ V → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
107, 9syl 17 . . . . 5 (𝑃 ∈ dom 𝑁 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)))
1110ibi 266 . . . 4 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))
12 simpr 483 . . . . . . 7 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → 𝑃 = (𝐺 Σg 𝑤))
13 eqid 2726 . . . . . . 7 (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))
14 ovex 7457 . . . . . . . 8 (-1↑(♯‘𝑤)) ∈ V
15 eqeq1 2730 . . . . . . . . 9 (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))))
1615anbi2d 628 . . . . . . . 8 (𝑠 = (-1↑(♯‘𝑤)) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤)))))
1714, 16spcev 3592 . . . . . . 7 ((𝑃 = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑤))) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1812, 13, 17sylancl 584 . . . . . 6 (((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) ∧ 𝑃 = (𝐺 Σg 𝑤)) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
1918ex 411 . . . . 5 ((𝑃 ∈ dom 𝑁𝑤 ∈ Word 𝑇) → (𝑃 = (𝐺 Σg 𝑤) → ∃𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2019reximdva 3158 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤) → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2111, 20mpd 15 . . 3 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
22 rexcom4 3276 . . 3 (∃𝑤 ∈ Word 𝑇𝑠(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
2321, 22sylib 217 . 2 (𝑃 ∈ dom 𝑁 → ∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
24 reeanv 3217 . . . 4 (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) ↔ (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
257ad2antrr 724 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝐷 ∈ V)
26 simplrl 775 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑤 ∈ Word 𝑇)
27 simplrr 776 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑥 ∈ Word 𝑇)
28 simprll 777 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑤))
29 simprrl 779 . . . . . . . . 9 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑃 = (𝐺 Σg 𝑥))
3028, 29eqtr3d 2768 . . . . . . . 8 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
311, 8, 25, 26, 27, 30psgnuni 19497 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
32 simprlr 778 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = (-1↑(♯‘𝑤)))
33 simprrr 780 . . . . . . 7 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑡 = (-1↑(♯‘𝑥)))
3431, 32, 333eqtr4d 2776 . . . . . 6 (((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) ∧ ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))) → 𝑠 = 𝑡)
3534ex 411 . . . . 5 ((𝑃 ∈ dom 𝑁 ∧ (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇)) → (((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3635rexlimdvva 3202 . . . 4 (𝑃 ∈ dom 𝑁 → (∃𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3724, 36biimtrrid 242 . . 3 (𝑃 ∈ dom 𝑁 → ((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
3837alrimivv 1924 . 2 (𝑃 ∈ dom 𝑁 → ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡))
39 eqeq1 2730 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑤))))
4039anbi2d 628 . . . . 5 (𝑠 = 𝑡 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
4140rexbidv 3169 . . . 4 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤)))))
42 oveq2 7432 . . . . . . 7 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
4342eqeq2d 2737 . . . . . 6 (𝑤 = 𝑥 → (𝑃 = (𝐺 Σg 𝑤) ↔ 𝑃 = (𝐺 Σg 𝑥)))
44 fveq2 6901 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
4544oveq2d 7440 . . . . . . 7 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
4645eqeq2d 2737 . . . . . 6 (𝑤 = 𝑥 → (𝑡 = (-1↑(♯‘𝑤)) ↔ 𝑡 = (-1↑(♯‘𝑥))))
4743, 46anbi12d 630 . . . . 5 (𝑤 = 𝑥 → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
4847cbvrexvw 3226 . . . 4 (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑡 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥))))
4941, 48bitrdi 286 . . 3 (𝑠 = 𝑡 → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))))
5049eu4 2604 . 2 (∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (∃𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∀𝑠𝑡((∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ∧ ∃𝑥 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑥) ∧ 𝑡 = (-1↑(♯‘𝑥)))) → 𝑠 = 𝑡)))
5123, 38, 50sylanbrc 581 1 (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wex 1774  wcel 2099  ∃!weu 2557  wrex 3060  Vcvv 3462  cdif 3944   I cid 5579  dom cdm 5682  ran crn 5683  cfv 6554  (class class class)co 7424  Fincfn 8974  1c1 11159  -cneg 11495  cexp 14081  chash 14347  Word cword 14522  Basecbs 17213   Σg cgsu 17455  SymGrpcsymg 19364  pmTrspcpmtr 19439  pmSgncpsgn 19487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-word 14523  df-lsw 14571  df-concat 14579  df-s1 14604  df-substr 14649  df-pfx 14679  df-splice 14758  df-reverse 14767  df-s2 14857  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-tset 17285  df-0g 17456  df-gsum 17457  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-efmnd 18859  df-grp 18931  df-minusg 18932  df-subg 19117  df-ghm 19207  df-gim 19253  df-oppg 19340  df-symg 19365  df-pmtr 19440  df-psgn 19489
This theorem is referenced by:  psgnvali  19506  psgnvalii  19507  psgnfieu  19516
  Copyright terms: Public domain W3C validator