Step | Hyp | Ref
| Expression |
1 | | vex 3440 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
2 | | vex 3440 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
3 | 1, 2 | opeldm 5667 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐺 → 𝑥 ∈ dom 𝐺) |
4 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → 𝑥 ∈ dom 𝐺)) |
5 | | ssel 3887 |
. . . . . . 7
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → 〈𝑥, 𝑦〉 ∈ 𝐹)) |
6 | 4, 5 | jcad 513 |
. . . . . 6
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → (𝑥 ∈ dom 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
7 | 6 | adantl 482 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐺 → (𝑥 ∈ dom 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
8 | | funeu2 6256 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → ∃!𝑦〈𝑥, 𝑦〉 ∈ 𝐹) |
9 | 1 | eldm2 5661 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ dom 𝐺 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐺) |
10 | 5 | ancrd 552 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
11 | 10 | eximdv 1895 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ⊆ 𝐹 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐺 → ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
12 | 9, 11 | syl5bi 243 |
. . . . . . . . . . . . 13
⊢ (𝐺 ⊆ 𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
13 | 12 | imp 407 |
. . . . . . . . . . . 12
⊢ ((𝐺 ⊆ 𝐹 ∧ 𝑥 ∈ dom 𝐺) → ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
14 | | eupick 2688 |
. . . . . . . . . . . 12
⊢
((∃!𝑦〈𝑥, 𝑦〉 ∈ 𝐹 ∧ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺)) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺)) |
15 | 8, 13, 14 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((Fun
𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) ∧ (𝐺 ⊆ 𝐹 ∧ 𝑥 ∈ dom 𝐺)) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺)) |
16 | 15 | exp43 437 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝐺 ⊆ 𝐹 → (𝑥 ∈ dom 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺))))) |
17 | 16 | com23 86 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺))))) |
18 | 17 | imp 407 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺)))) |
19 | 18 | com34 91 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → 〈𝑥, 𝑦〉 ∈ 𝐺)))) |
20 | 19 | pm2.43d 53 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → 〈𝑥, 𝑦〉 ∈ 𝐺))) |
21 | 20 | impcomd 412 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝑥 ∈ dom 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → 〈𝑥, 𝑦〉 ∈ 𝐺)) |
22 | 7, 21 | impbid 213 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐺 ↔ (𝑥 ∈ dom 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
23 | 2 | opelresi 5747 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ (𝑥 ∈ dom 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
24 | 22, 23 | syl6rbbr 291 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
25 | 24 | alrimivv 1906 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
26 | | relres 5768 |
. . 3
⊢ Rel
(𝐹 ↾ dom 𝐺) |
27 | | funrel 6247 |
. . . 4
⊢ (Fun
𝐹 → Rel 𝐹) |
28 | | relss 5547 |
. . . 4
⊢ (𝐺 ⊆ 𝐹 → (Rel 𝐹 → Rel 𝐺)) |
29 | 27, 28 | mpan9 507 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → Rel 𝐺) |
30 | | eqrel 5549 |
. . 3
⊢ ((Rel
(𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
31 | 26, 29, 30 | sylancr 587 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
32 | 25, 31 | mpbird 258 |
1
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) |