MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem1 Structured version   Visualization version   GIF version

Theorem eupth2lem1 30147
Description: Lemma for eupth2 30168. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
eupth2lem1 (𝑈𝑉 → (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))

Proof of Theorem eupth2lem1
StepHypRef Expression
1 eleq2 2817 . . 3 (∅ = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → (𝑈 ∈ ∅ ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵})))
21bibi1d 343 . 2 (∅ = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → ((𝑈 ∈ ∅ ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))) ↔ (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)))))
3 eleq2 2817 . . 3 ({𝐴, 𝐵} = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → (𝑈 ∈ {𝐴, 𝐵} ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵})))
43bibi1d 343 . 2 ({𝐴, 𝐵} = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → ((𝑈 ∈ {𝐴, 𝐵} ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))) ↔ (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)))))
5 noel 4301 . . . 4 ¬ 𝑈 ∈ ∅
65a1i 11 . . 3 ((𝑈𝑉𝐴 = 𝐵) → ¬ 𝑈 ∈ ∅)
7 simpl 482 . . . . 5 ((𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)) → 𝐴𝐵)
87neneqd 2930 . . . 4 ((𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)) → ¬ 𝐴 = 𝐵)
9 simpr 484 . . . 4 ((𝑈𝑉𝐴 = 𝐵) → 𝐴 = 𝐵)
108, 9nsyl3 138 . . 3 ((𝑈𝑉𝐴 = 𝐵) → ¬ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)))
116, 102falsed 376 . 2 ((𝑈𝑉𝐴 = 𝐵) → (𝑈 ∈ ∅ ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
12 elprg 4612 . . 3 (𝑈𝑉 → (𝑈 ∈ {𝐴, 𝐵} ↔ (𝑈 = 𝐴𝑈 = 𝐵)))
13 df-ne 2926 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
14 ibar 528 . . . 4 (𝐴𝐵 → ((𝑈 = 𝐴𝑈 = 𝐵) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
1513, 14sylbir 235 . . 3 𝐴 = 𝐵 → ((𝑈 = 𝐴𝑈 = 𝐵) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
1612, 15sylan9bb 509 . 2 ((𝑈𝑉 ∧ ¬ 𝐴 = 𝐵) → (𝑈 ∈ {𝐴, 𝐵} ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
172, 4, 11, 16ifbothda 4527 1 (𝑈𝑉 → (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  c0 4296  ifcif 4488  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592
This theorem is referenced by:  eupth2lem2  30148  eupth2lem3lem6  30162
  Copyright terms: Public domain W3C validator