| Step | Hyp | Ref
| Expression |
| 1 | | eupth2.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | eupth2.i |
. . . . . . 7
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | | eupth2.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 4 | | eupth2.f |
. . . . . . 7
⊢ (𝜑 → Fun 𝐼) |
| 5 | | eupth2.p |
. . . . . . 7
⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| 6 | | eqid 2737 |
. . . . . . 7
⊢
〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
| 7 | 1, 2, 3, 4, 5, 6 | eupthvdres 30254 |
. . . . . 6
⊢ (𝜑 → (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) =
(VtxDeg‘𝐺)) |
| 8 | 7 | fveq1d 6908 |
. . . . 5
⊢ (𝜑 → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉)‘𝑥) = ((VtxDeg‘𝐺)‘𝑥)) |
| 9 | 8 | breq2d 5155 |
. . . 4
⊢ (𝜑 → (2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘𝑥))) |
| 10 | 9 | notbid 318 |
. . 3
⊢ (𝜑 → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥))) |
| 11 | 10 | rabbidv 3444 |
. 2
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝐺)‘𝑥)}) |
| 12 | | eupthiswlk 30231 |
. . . 4
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 13 | | wlkcl 29633 |
. . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
| 14 | 5, 12, 13 | 3syl 18 |
. . 3
⊢ (𝜑 → (♯‘𝐹) ∈
ℕ0) |
| 15 | | nn0re 12535 |
. . . . 5
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ ℝ) |
| 16 | 15 | leidd 11829 |
. . . 4
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ≤ (♯‘𝐹)) |
| 17 | | breq1 5146 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑚 ≤ (♯‘𝐹) ↔ 0 ≤ (♯‘𝐹))) |
| 18 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 0 → (0..^𝑚) = (0..^0)) |
| 19 | 18 | imaeq2d 6078 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 0 → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^0))) |
| 20 | 19 | reseq2d 5997 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 0 → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^0)))) |
| 21 | 20 | opeq2d 4880 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 0 → 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉) |
| 22 | 21 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑚 = 0 →
(VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉) = (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)) |
| 23 | 22 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑚 = 0 →
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) = ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)) |
| 24 | 23 | breq2d 5155 |
. . . . . . . . . 10
⊢ (𝑚 = 0 → (2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥))) |
| 25 | 24 | notbid 318 |
. . . . . . . . 9
⊢ (𝑚 = 0 → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥))) |
| 26 | 25 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑚 = 0 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}) |
| 27 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑚 = 0 → (𝑃‘𝑚) = (𝑃‘0)) |
| 28 | 27 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑚 = 0 → ((𝑃‘0) = (𝑃‘𝑚) ↔ (𝑃‘0) = (𝑃‘0))) |
| 29 | 27 | preq2d 4740 |
. . . . . . . . 9
⊢ (𝑚 = 0 → {(𝑃‘0), (𝑃‘𝑚)} = {(𝑃‘0), (𝑃‘0)}) |
| 30 | 28, 29 | ifbieq2d 4552 |
. . . . . . . 8
⊢ (𝑚 = 0 → if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})) |
| 31 | 26, 30 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑚 = 0 → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) ↔ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}
= if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))) |
| 32 | 17, 31 | imbi12d 344 |
. . . . . 6
⊢ (𝑚 = 0 → ((𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)})) ↔ (0 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}
= if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))) |
| 33 | 32 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 0 → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}))) ↔ (𝜑 → (0 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}
= if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))))) |
| 34 | | breq1 5146 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑚 ≤ (♯‘𝐹) ↔ 𝑛 ≤ (♯‘𝐹))) |
| 35 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → (0..^𝑚) = (0..^𝑛)) |
| 36 | 35 | imaeq2d 6078 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^𝑛))) |
| 37 | 36 | reseq2d 5997 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^𝑛)))) |
| 38 | 37 | opeq2d 4880 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉) |
| 39 | 38 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉) = (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)) |
| 40 | 39 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) = ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)) |
| 41 | 40 | breq2d 5155 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥))) |
| 42 | 41 | notbid 318 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥))) |
| 43 | 42 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)}) |
| 44 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝑃‘𝑚) = (𝑃‘𝑛)) |
| 45 | 44 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝑃‘0) = (𝑃‘𝑚) ↔ (𝑃‘0) = (𝑃‘𝑛))) |
| 46 | 44 | preq2d 4740 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → {(𝑃‘0), (𝑃‘𝑚)} = {(𝑃‘0), (𝑃‘𝑛)}) |
| 47 | 45, 46 | ifbieq2d 4552 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) |
| 48 | 43, 47 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) ↔ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) |
| 49 | 34, 48 | imbi12d 344 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)})) ↔ (𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})))) |
| 50 | 49 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}))) ↔ (𝜑 → (𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))))) |
| 51 | | breq1 5146 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (𝑚 ≤ (♯‘𝐹) ↔ (𝑛 + 1) ≤ (♯‘𝐹))) |
| 52 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑛 + 1) → (0..^𝑚) = (0..^(𝑛 + 1))) |
| 53 | 52 | imaeq2d 6078 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑛 + 1) → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^(𝑛 + 1)))) |
| 54 | 53 | reseq2d 5997 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 + 1) → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))) |
| 55 | 54 | opeq2d 4880 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉) |
| 56 | 55 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉) = (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)) |
| 57 | 56 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) = ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)) |
| 58 | 57 | breq2d 5155 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → (2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥))) |
| 59 | 58 | notbid 318 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥))) |
| 60 | 59 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)}) |
| 61 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → (𝑃‘𝑚) = (𝑃‘(𝑛 + 1))) |
| 62 | 61 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → ((𝑃‘0) = (𝑃‘𝑚) ↔ (𝑃‘0) = (𝑃‘(𝑛 + 1)))) |
| 63 | 61 | preq2d 4740 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → {(𝑃‘0), (𝑃‘𝑚)} = {(𝑃‘0), (𝑃‘(𝑛 + 1))}) |
| 64 | 62, 63 | ifbieq2d 4552 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})) |
| 65 | 60, 64 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) ↔ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
| 66 | 51, 65 | imbi12d 344 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)})) ↔ ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
| 67 | 66 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}))) ↔ (𝜑 → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))) |
| 68 | | breq1 5146 |
. . . . . . 7
⊢ (𝑚 = (♯‘𝐹) → (𝑚 ≤ (♯‘𝐹) ↔ (♯‘𝐹) ≤ (♯‘𝐹))) |
| 69 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (♯‘𝐹) → (0..^𝑚) = (0..^(♯‘𝐹))) |
| 70 | 69 | imaeq2d 6078 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (♯‘𝐹) → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^(♯‘𝐹)))) |
| 71 | 70 | reseq2d 5997 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (♯‘𝐹) → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 72 | 71 | opeq2d 4880 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (♯‘𝐹) → 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 73 | 72 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑚 = (♯‘𝐹) →
(VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉) = (VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉)) |
| 74 | 73 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑚 = (♯‘𝐹) →
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) = ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉)‘𝑥)) |
| 75 | 74 | breq2d 5155 |
. . . . . . . . . 10
⊢ (𝑚 = (♯‘𝐹) → (2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉)‘𝑥))) |
| 76 | 75 | notbid 318 |
. . . . . . . . 9
⊢ (𝑚 = (♯‘𝐹) → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥) ↔ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥))) |
| 77 | 76 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑚 = (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)}) |
| 78 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑚 = (♯‘𝐹) → (𝑃‘𝑚) = (𝑃‘(♯‘𝐹))) |
| 79 | 78 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑚 = (♯‘𝐹) → ((𝑃‘0) = (𝑃‘𝑚) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| 80 | 78 | preq2d 4740 |
. . . . . . . . 9
⊢ (𝑚 = (♯‘𝐹) → {(𝑃‘0), (𝑃‘𝑚)} = {(𝑃‘0), (𝑃‘(♯‘𝐹))}) |
| 81 | 79, 80 | ifbieq2d 4552 |
. . . . . . . 8
⊢ (𝑚 = (♯‘𝐹) → if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
| 82 | 77, 81 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑚 = (♯‘𝐹) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}) ↔ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) |
| 83 | 68, 82 | imbi12d 344 |
. . . . . 6
⊢ (𝑚 = (♯‘𝐹) → ((𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)})) ↔ ((♯‘𝐹) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))) |
| 84 | 83 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = (♯‘𝐹) → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑚)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑚), ∅, {(𝑃‘0), (𝑃‘𝑚)}))) ↔ (𝜑 → ((♯‘𝐹) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))))) |
| 85 | 1, 2, 3, 4, 5 | eupth2lemb 30256 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}
= ∅) |
| 86 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑃‘0) = (𝑃‘0) |
| 87 | 86 | iftruei 4532 |
. . . . . . 7
⊢ if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}) = ∅ |
| 88 | 85, 87 | eqtr4di 2795 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}
= if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})) |
| 89 | 88 | a1d 25 |
. . . . 5
⊢ (𝜑 → (0 ≤
(♯‘𝐹) →
{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^0)))〉)‘𝑥)}
= if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))) |
| 90 | 1, 2, 3, 4, 5 | eupth2lems 30257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
| 91 | 90 | expcom 413 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ (𝜑 → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))) |
| 92 | 91 | a2d 29 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 → (𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝜑 → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))) |
| 93 | 33, 50, 67, 84, 89, 92 | nn0ind 12713 |
. . . 4
⊢
((♯‘𝐹)
∈ ℕ0 → (𝜑 → ((♯‘𝐹) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))) |
| 94 | 16, 93 | mpid 44 |
. . 3
⊢
((♯‘𝐹)
∈ ℕ0 → (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) |
| 95 | 14, 94 | mpcom 38 |
. 2
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “
(0..^(♯‘𝐹))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
| 96 | 11, 95 | eqtr3d 2779 |
1
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |