MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2 Structured version   Visualization version   GIF version

Theorem eupth2 30271
Description: The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem eupth2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupth2.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 eupth2.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
3 eupth2.g . . . . . . 7 (𝜑𝐺 ∈ UPGraph)
4 eupth2.f . . . . . . 7 (𝜑 → Fun 𝐼)
5 eupth2.p . . . . . . 7 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eqid 2740 . . . . . . 7 𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
71, 2, 3, 4, 5, 6eupthvdres 30267 . . . . . 6 (𝜑 → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (VtxDeg‘𝐺))
87fveq1d 6922 . . . . 5 (𝜑 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥) = ((VtxDeg‘𝐺)‘𝑥))
98breq2d 5178 . . . 4 (𝜑 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)))
109notbid 318 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)))
1110rabbidv 3451 . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
12 eupthiswlk 30244 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
13 wlkcl 29651 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
145, 12, 133syl 18 . . 3 (𝜑 → (♯‘𝐹) ∈ ℕ0)
15 nn0re 12562 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℝ)
1615leidd 11856 . . . 4 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ≤ (♯‘𝐹))
17 breq1 5169 . . . . . . 7 (𝑚 = 0 → (𝑚 ≤ (♯‘𝐹) ↔ 0 ≤ (♯‘𝐹)))
18 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑚 = 0 → (0..^𝑚) = (0..^0))
1918imaeq2d 6089 . . . . . . . . . . . . . . 15 (𝑚 = 0 → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^0)))
2019reseq2d 6009 . . . . . . . . . . . . . 14 (𝑚 = 0 → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^0))))
2120opeq2d 4904 . . . . . . . . . . . . 13 (𝑚 = 0 → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
2221fveq2d 6924 . . . . . . . . . . . 12 (𝑚 = 0 → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
2322fveq1d 6922 . . . . . . . . . . 11 (𝑚 = 0 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
2423breq2d 5178 . . . . . . . . . 10 (𝑚 = 0 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)))
2524notbid 318 . . . . . . . . 9 (𝑚 = 0 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)))
2625rabbidv 3451 . . . . . . . 8 (𝑚 = 0 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)})
27 fveq2 6920 . . . . . . . . . 10 (𝑚 = 0 → (𝑃𝑚) = (𝑃‘0))
2827eqeq2d 2751 . . . . . . . . 9 (𝑚 = 0 → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃‘0)))
2927preq2d 4765 . . . . . . . . 9 (𝑚 = 0 → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃‘0)})
3028, 29ifbieq2d 4574 . . . . . . . 8 (𝑚 = 0 → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))
3126, 30eqeq12d 2756 . . . . . . 7 (𝑚 = 0 → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))
3217, 31imbi12d 344 . . . . . 6 (𝑚 = 0 → ((𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ (0 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))))
3332imbi2d 340 . . . . 5 (𝑚 = 0 → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → (0 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))))
34 breq1 5169 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 ≤ (♯‘𝐹) ↔ 𝑛 ≤ (♯‘𝐹)))
35 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (0..^𝑚) = (0..^𝑛))
3635imaeq2d 6089 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^𝑛)))
3736reseq2d 6009 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^𝑛))))
3837opeq2d 4904 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)
3938fveq2d 6924 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩))
4039fveq1d 6922 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥))
4140breq2d 5178 . . . . . . . . . 10 (𝑚 = 𝑛 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)))
4241notbid 318 . . . . . . . . 9 (𝑚 = 𝑛 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)))
4342rabbidv 3451 . . . . . . . 8 (𝑚 = 𝑛 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)})
44 fveq2 6920 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑃𝑚) = (𝑃𝑛))
4544eqeq2d 2751 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃𝑛)))
4644preq2d 4765 . . . . . . . . 9 (𝑚 = 𝑛 → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃𝑛)})
4745, 46ifbieq2d 4574 . . . . . . . 8 (𝑚 = 𝑛 → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))
4843, 47eqeq12d 2756 . . . . . . 7 (𝑚 = 𝑛 → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})))
4934, 48imbi12d 344 . . . . . 6 (𝑚 = 𝑛 → ((𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ (𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))))
5049imbi2d 340 . . . . 5 (𝑚 = 𝑛 → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → (𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})))))
51 breq1 5169 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑚 ≤ (♯‘𝐹) ↔ (𝑛 + 1) ≤ (♯‘𝐹)))
52 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 + 1) → (0..^𝑚) = (0..^(𝑛 + 1)))
5352imaeq2d 6089 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 + 1) → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^(𝑛 + 1))))
5453reseq2d 6009 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1)))))
5554opeq2d 4904 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)
5655fveq2d 6924 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩))
5756fveq1d 6922 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥))
5857breq2d 5178 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)))
5958notbid 318 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)))
6059rabbidv 3451 . . . . . . . 8 (𝑚 = (𝑛 + 1) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)})
61 fveq2 6920 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑃𝑚) = (𝑃‘(𝑛 + 1)))
6261eqeq2d 2751 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃‘(𝑛 + 1))))
6361preq2d 4765 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃‘(𝑛 + 1))})
6462, 63ifbieq2d 4574 . . . . . . . 8 (𝑚 = (𝑛 + 1) → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))
6560, 64eqeq12d 2756 . . . . . . 7 (𝑚 = (𝑛 + 1) → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
6651, 65imbi12d 344 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
6766imbi2d 340 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))))
68 breq1 5169 . . . . . . 7 (𝑚 = (♯‘𝐹) → (𝑚 ≤ (♯‘𝐹) ↔ (♯‘𝐹) ≤ (♯‘𝐹)))
69 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑚 = (♯‘𝐹) → (0..^𝑚) = (0..^(♯‘𝐹)))
7069imaeq2d 6089 . . . . . . . . . . . . . . 15 (𝑚 = (♯‘𝐹) → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^(♯‘𝐹))))
7170reseq2d 6009 . . . . . . . . . . . . . 14 (𝑚 = (♯‘𝐹) → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
7271opeq2d 4904 . . . . . . . . . . . . 13 (𝑚 = (♯‘𝐹) → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
7372fveq2d 6924 . . . . . . . . . . . 12 (𝑚 = (♯‘𝐹) → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩))
7473fveq1d 6922 . . . . . . . . . . 11 (𝑚 = (♯‘𝐹) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥))
7574breq2d 5178 . . . . . . . . . 10 (𝑚 = (♯‘𝐹) → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)))
7675notbid 318 . . . . . . . . 9 (𝑚 = (♯‘𝐹) → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)))
7776rabbidv 3451 . . . . . . . 8 (𝑚 = (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)})
78 fveq2 6920 . . . . . . . . . 10 (𝑚 = (♯‘𝐹) → (𝑃𝑚) = (𝑃‘(♯‘𝐹)))
7978eqeq2d 2751 . . . . . . . . 9 (𝑚 = (♯‘𝐹) → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
8078preq2d 4765 . . . . . . . . 9 (𝑚 = (♯‘𝐹) → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃‘(♯‘𝐹))})
8179, 80ifbieq2d 4574 . . . . . . . 8 (𝑚 = (♯‘𝐹) → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))
8277, 81eqeq12d 2756 . . . . . . 7 (𝑚 = (♯‘𝐹) → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
8368, 82imbi12d 344 . . . . . 6 (𝑚 = (♯‘𝐹) → ((𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ ((♯‘𝐹) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))))
8483imbi2d 340 . . . . 5 (𝑚 = (♯‘𝐹) → ((𝜑 → (𝑚 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → ((♯‘𝐹) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))))
851, 2, 3, 4, 5eupth2lemb 30269 . . . . . . 7 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
86 eqid 2740 . . . . . . . 8 (𝑃‘0) = (𝑃‘0)
8786iftruei 4555 . . . . . . 7 if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}) = ∅
8885, 87eqtr4di 2798 . . . . . 6 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))
8988a1d 25 . . . . 5 (𝜑 → (0 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))
901, 2, 3, 4, 5eupth2lems 30270 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
9190expcom 413 . . . . . 6 (𝑛 ∈ ℕ0 → (𝜑 → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))))
9291a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝜑 → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))))
9333, 50, 67, 84, 89, 92nn0ind 12738 . . . 4 ((♯‘𝐹) ∈ ℕ0 → (𝜑 → ((♯‘𝐹) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))))
9416, 93mpid 44 . . 3 ((♯‘𝐹) ∈ ℕ0 → (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
9514, 94mpcom 38 . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))
9611, 95eqtr3d 2782 1 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  {crab 3443  c0 4352  ifcif 4548  {cpr 4650  cop 4654   class class class wbr 5166  cres 5702  cima 5703  Fun wfun 6567  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  2c2 12348  0cn0 12553  ..^cfzo 13711  chash 14379  cdvds 16302  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115  VtxDegcvtxdg 29501  Walkscwlks 29632  EulerPathsceupth 30229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-uspgr 29185  df-vtxdg 29502  df-wlks 29635  df-trls 29728  df-eupth 30230
This theorem is referenced by:  eulerpathpr  30272  eulercrct  30274
  Copyright terms: Public domain W3C validator