MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddvdsd Structured version   Visualization version   GIF version

Theorem fproddvdsd 16369
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.)
Hypotheses
Ref Expression
fproddvdsd.f (𝜑𝐴 ∈ Fin)
fproddvdsd.s (𝜑𝐴 ⊆ ℤ)
Assertion
Ref Expression
fproddvdsd (𝜑 → ∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fproddvdsd
StepHypRef Expression
1 fproddvdsd.f . . 3 (𝜑𝐴 ∈ Fin)
2 fproddvdsd.s . . 3 (𝜑𝐴 ⊆ ℤ)
3 f1oi 6887 . . . 4 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
4 f1of 6849 . . . 4 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ⟶ℤ)
53, 4mp1i 13 . . 3 (𝜑 → ( I ↾ ℤ):ℤ⟶ℤ)
61, 2, 5fprodfvdvdsd 16368 . 2 (𝜑 → ∀𝑥𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘))
72sselda 3995 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℤ)
8 fvresi 7193 . . . . . 6 (𝑥 ∈ ℤ → (( I ↾ ℤ)‘𝑥) = 𝑥)
97, 8syl 17 . . . . 5 ((𝜑𝑥𝐴) → (( I ↾ ℤ)‘𝑥) = 𝑥)
109eqcomd 2741 . . . 4 ((𝜑𝑥𝐴) → 𝑥 = (( I ↾ ℤ)‘𝑥))
112sseld 3994 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ ℤ))
1211adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑘𝐴𝑘 ∈ ℤ))
1312imp 406 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘 ∈ ℤ)
14 fvresi 7193 . . . . . . 7 (𝑘 ∈ ℤ → (( I ↾ ℤ)‘𝑘) = 𝑘)
1513, 14syl 17 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (( I ↾ ℤ)‘𝑘) = 𝑘)
1615eqcomd 2741 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘 = (( I ↾ ℤ)‘𝑘))
1716prodeq2dv 15955 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 𝑘 = ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘))
1810, 17breq12d 5161 . . 3 ((𝜑𝑥𝐴) → (𝑥 ∥ ∏𝑘𝐴 𝑘 ↔ (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘)))
1918ralbidva 3174 . 2 (𝜑 → (∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘 ↔ ∀𝑥𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘)))
206, 19mpbird 257 1 (𝜑 → ∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963   class class class wbr 5148   I cid 5582  cres 5691  wf 6559  1-1-ontowf1o 6562  cfv 6563  Fincfn 8984  cz 12611  cprod 15936  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288
This theorem is referenced by:  absproddvds  16651
  Copyright terms: Public domain W3C validator