MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddvdsd Structured version   Visualization version   GIF version

Theorem fproddvdsd 15896
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.)
Hypotheses
Ref Expression
fproddvdsd.f (𝜑𝐴 ∈ Fin)
fproddvdsd.s (𝜑𝐴 ⊆ ℤ)
Assertion
Ref Expression
fproddvdsd (𝜑 → ∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fproddvdsd
StepHypRef Expression
1 fproddvdsd.f . . 3 (𝜑𝐴 ∈ Fin)
2 fproddvdsd.s . . 3 (𝜑𝐴 ⊆ ℤ)
3 f1oi 6698 . . . 4 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
4 f1of 6661 . . . 4 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ⟶ℤ)
53, 4mp1i 13 . . 3 (𝜑 → ( I ↾ ℤ):ℤ⟶ℤ)
61, 2, 5fprodfvdvdsd 15895 . 2 (𝜑 → ∀𝑥𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘))
72sselda 3901 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℤ)
8 fvresi 6988 . . . . . 6 (𝑥 ∈ ℤ → (( I ↾ ℤ)‘𝑥) = 𝑥)
97, 8syl 17 . . . . 5 ((𝜑𝑥𝐴) → (( I ↾ ℤ)‘𝑥) = 𝑥)
109eqcomd 2743 . . . 4 ((𝜑𝑥𝐴) → 𝑥 = (( I ↾ ℤ)‘𝑥))
112sseld 3900 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ ℤ))
1211adantr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑘𝐴𝑘 ∈ ℤ))
1312imp 410 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘 ∈ ℤ)
14 fvresi 6988 . . . . . . 7 (𝑘 ∈ ℤ → (( I ↾ ℤ)‘𝑘) = 𝑘)
1513, 14syl 17 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (( I ↾ ℤ)‘𝑘) = 𝑘)
1615eqcomd 2743 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘 = (( I ↾ ℤ)‘𝑘))
1716prodeq2dv 15485 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 𝑘 = ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘))
1810, 17breq12d 5066 . . 3 ((𝜑𝑥𝐴) → (𝑥 ∥ ∏𝑘𝐴 𝑘 ↔ (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘)))
1918ralbidva 3117 . 2 (𝜑 → (∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘 ↔ ∀𝑥𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘)))
206, 19mpbird 260 1 (𝜑 → ∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866   class class class wbr 5053   I cid 5454  cres 5553  wf 6376  1-1-ontowf1o 6379  cfv 6380  Fincfn 8626  cz 12176  cprod 15467  cdvds 15815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-prod 15468  df-dvds 15816
This theorem is referenced by:  absproddvds  16174
  Copyright terms: Public domain W3C validator