Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fproddvdsd | Structured version Visualization version GIF version |
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.) |
Ref | Expression |
---|---|
fproddvdsd.f | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fproddvdsd.s | ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
Ref | Expression |
---|---|
fproddvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fproddvdsd.f | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fproddvdsd.s | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℤ) | |
3 | f1oi 6698 | . . . 4 ⊢ ( I ↾ ℤ):ℤ–1-1-onto→ℤ | |
4 | f1of 6661 | . . . 4 ⊢ (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ⟶ℤ) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ ℤ):ℤ⟶ℤ) |
6 | 1, 2, 5 | fprodfvdvdsd 15895 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘)) |
7 | 2 | sselda 3901 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) |
8 | fvresi 6988 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (( I ↾ ℤ)‘𝑥) = 𝑥) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( I ↾ ℤ)‘𝑥) = 𝑥) |
10 | 9 | eqcomd 2743 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (( I ↾ ℤ)‘𝑥)) |
11 | 2 | sseld 3900 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ)) |
12 | 11 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ)) |
13 | 12 | imp 410 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℤ) |
14 | fvresi 6988 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → (( I ↾ ℤ)‘𝑘) = 𝑘) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (( I ↾ ℤ)‘𝑘) = 𝑘) |
16 | 15 | eqcomd 2743 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 = (( I ↾ ℤ)‘𝑘)) |
17 | 16 | prodeq2dv 15485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 𝑘 = ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘)) |
18 | 10, 17 | breq12d 5066 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘 ↔ (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘))) |
19 | 18 | ralbidva 3117 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘 ↔ ∀𝑥 ∈ 𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘))) |
20 | 6, 19 | mpbird 260 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 class class class wbr 5053 I cid 5454 ↾ cres 5553 ⟶wf 6376 –1-1-onto→wf1o 6379 ‘cfv 6380 Fincfn 8626 ℤcz 12176 ∏cprod 15467 ∥ cdvds 15815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-prod 15468 df-dvds 15816 |
This theorem is referenced by: absproddvds 16174 |
Copyright terms: Public domain | W3C validator |