![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fproddvdsd | Structured version Visualization version GIF version |
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.) |
Ref | Expression |
---|---|
fproddvdsd.f | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fproddvdsd.s | ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
Ref | Expression |
---|---|
fproddvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fproddvdsd.f | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fproddvdsd.s | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℤ) | |
3 | f1oi 6871 | . . . 4 ⊢ ( I ↾ ℤ):ℤ–1-1-onto→ℤ | |
4 | f1of 6833 | . . . 4 ⊢ (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ⟶ℤ) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ ℤ):ℤ⟶ℤ) |
6 | 1, 2, 5 | fprodfvdvdsd 16284 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘)) |
7 | 2 | sselda 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) |
8 | fvresi 7173 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (( I ↾ ℤ)‘𝑥) = 𝑥) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( I ↾ ℤ)‘𝑥) = 𝑥) |
10 | 9 | eqcomd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (( I ↾ ℤ)‘𝑥)) |
11 | 2 | sseld 3981 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ)) |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ)) |
13 | 12 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℤ) |
14 | fvresi 7173 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → (( I ↾ ℤ)‘𝑘) = 𝑘) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (( I ↾ ℤ)‘𝑘) = 𝑘) |
16 | 15 | eqcomd 2737 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 = (( I ↾ ℤ)‘𝑘)) |
17 | 16 | prodeq2dv 15874 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 𝑘 = ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘)) |
18 | 10, 17 | breq12d 5161 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘 ↔ (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘))) |
19 | 18 | ralbidva 3174 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘 ↔ ∀𝑥 ∈ 𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘))) |
20 | 6, 19 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 class class class wbr 5148 I cid 5573 ↾ cres 5678 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 Fincfn 8945 ℤcz 12565 ∏cprod 15856 ∥ cdvds 16204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-prod 15857 df-dvds 16205 |
This theorem is referenced by: absproddvds 16561 |
Copyright terms: Public domain | W3C validator |