![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fproddvdsd | Structured version Visualization version GIF version |
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.) |
Ref | Expression |
---|---|
fproddvdsd.f | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fproddvdsd.s | ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
Ref | Expression |
---|---|
fproddvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fproddvdsd.f | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fproddvdsd.s | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℤ) | |
3 | f1oi 6479 | . . . 4 ⊢ ( I ↾ ℤ):ℤ–1-1-onto→ℤ | |
4 | f1of 6442 | . . . 4 ⊢ (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ⟶ℤ) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ ℤ):ℤ⟶ℤ) |
6 | 1, 2, 5 | fprodfvdvdsd 15542 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘)) |
7 | 2 | sselda 3853 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) |
8 | fvresi 6757 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (( I ↾ ℤ)‘𝑥) = 𝑥) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( I ↾ ℤ)‘𝑥) = 𝑥) |
10 | 9 | eqcomd 2779 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (( I ↾ ℤ)‘𝑥)) |
11 | 2 | sseld 3852 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ)) |
12 | 11 | adantr 473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ)) |
13 | 12 | imp 398 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℤ) |
14 | fvresi 6757 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → (( I ↾ ℤ)‘𝑘) = 𝑘) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (( I ↾ ℤ)‘𝑘) = 𝑘) |
16 | 15 | eqcomd 2779 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 = (( I ↾ ℤ)‘𝑘)) |
17 | 16 | prodeq2dv 15136 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 𝑘 = ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘)) |
18 | 10, 17 | breq12d 4939 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘 ↔ (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘))) |
19 | 18 | ralbidva 3141 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘 ↔ ∀𝑥 ∈ 𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (( I ↾ ℤ)‘𝑘))) |
20 | 6, 19 | mpbird 249 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∥ ∏𝑘 ∈ 𝐴 𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ⊆ wss 3824 class class class wbr 4926 I cid 5308 ↾ cres 5406 ⟶wf 6182 –1-1-onto→wf1o 6185 ‘cfv 6186 Fincfn 8305 ℤcz 11792 ∏cprod 15118 ∥ cdvds 15466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-sup 8700 df-oi 8768 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-z 11793 df-uz 12058 df-rp 12204 df-fz 12708 df-fzo 12849 df-seq 13184 df-exp 13244 df-hash 13505 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-clim 14705 df-prod 15119 df-dvds 15467 |
This theorem is referenced by: absproddvds 15816 |
Copyright terms: Public domain | W3C validator |