![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fproddvdsd | Structured version Visualization version GIF version |
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.) |
Ref | Expression |
---|---|
fproddvdsd.f | β’ (π β π΄ β Fin) |
fproddvdsd.s | β’ (π β π΄ β β€) |
Ref | Expression |
---|---|
fproddvdsd | β’ (π β βπ₯ β π΄ π₯ β₯ βπ β π΄ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fproddvdsd.f | . . 3 β’ (π β π΄ β Fin) | |
2 | fproddvdsd.s | . . 3 β’ (π β π΄ β β€) | |
3 | f1oi 6872 | . . . 4 β’ ( I βΎ β€):β€β1-1-ontoββ€ | |
4 | f1of 6834 | . . . 4 β’ (( I βΎ β€):β€β1-1-ontoββ€ β ( I βΎ β€):β€βΆβ€) | |
5 | 3, 4 | mp1i 13 | . . 3 β’ (π β ( I βΎ β€):β€βΆβ€) |
6 | 1, 2, 5 | fprodfvdvdsd 16282 | . 2 β’ (π β βπ₯ β π΄ (( I βΎ β€)βπ₯) β₯ βπ β π΄ (( I βΎ β€)βπ)) |
7 | 2 | sselda 3983 | . . . . . 6 β’ ((π β§ π₯ β π΄) β π₯ β β€) |
8 | fvresi 7174 | . . . . . 6 β’ (π₯ β β€ β (( I βΎ β€)βπ₯) = π₯) | |
9 | 7, 8 | syl 17 | . . . . 5 β’ ((π β§ π₯ β π΄) β (( I βΎ β€)βπ₯) = π₯) |
10 | 9 | eqcomd 2737 | . . . 4 β’ ((π β§ π₯ β π΄) β π₯ = (( I βΎ β€)βπ₯)) |
11 | 2 | sseld 3982 | . . . . . . . . 9 β’ (π β (π β π΄ β π β β€)) |
12 | 11 | adantr 480 | . . . . . . . 8 β’ ((π β§ π₯ β π΄) β (π β π΄ β π β β€)) |
13 | 12 | imp 406 | . . . . . . 7 β’ (((π β§ π₯ β π΄) β§ π β π΄) β π β β€) |
14 | fvresi 7174 | . . . . . . 7 β’ (π β β€ β (( I βΎ β€)βπ) = π) | |
15 | 13, 14 | syl 17 | . . . . . 6 β’ (((π β§ π₯ β π΄) β§ π β π΄) β (( I βΎ β€)βπ) = π) |
16 | 15 | eqcomd 2737 | . . . . 5 β’ (((π β§ π₯ β π΄) β§ π β π΄) β π = (( I βΎ β€)βπ)) |
17 | 16 | prodeq2dv 15872 | . . . 4 β’ ((π β§ π₯ β π΄) β βπ β π΄ π = βπ β π΄ (( I βΎ β€)βπ)) |
18 | 10, 17 | breq12d 5162 | . . 3 β’ ((π β§ π₯ β π΄) β (π₯ β₯ βπ β π΄ π β (( I βΎ β€)βπ₯) β₯ βπ β π΄ (( I βΎ β€)βπ))) |
19 | 18 | ralbidva 3174 | . 2 β’ (π β (βπ₯ β π΄ π₯ β₯ βπ β π΄ π β βπ₯ β π΄ (( I βΎ β€)βπ₯) β₯ βπ β π΄ (( I βΎ β€)βπ))) |
20 | 6, 19 | mpbird 256 | 1 β’ (π β βπ₯ β π΄ π₯ β₯ βπ β π΄ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β wss 3949 class class class wbr 5149 I cid 5574 βΎ cres 5679 βΆwf 6540 β1-1-ontoβwf1o 6543 βcfv 6544 Fincfn 8942 β€cz 12563 βcprod 15854 β₯ cdvds 16202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-prod 15855 df-dvds 16203 |
This theorem is referenced by: absproddvds 16559 |
Copyright terms: Public domain | W3C validator |