Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > even2n | Structured version Visualization version GIF version |
Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
Ref | Expression |
---|---|
even2n | ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenelz 15930 | . 2 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | |
2 | 2z 12239 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
4 | id 22 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
5 | 3, 4 | zmulcld 12318 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
6 | 5 | adantr 484 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → (2 · 𝑛) ∈ ℤ) |
7 | eleq1 2827 | . . . . 5 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) | |
8 | 7 | adantl 485 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) |
9 | 6, 8 | mpbid 235 | . . 3 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → 𝑁 ∈ ℤ) |
10 | 9 | rexlimiva 3210 | . 2 ⊢ (∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁 → 𝑁 ∈ ℤ) |
11 | divides 15850 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) | |
12 | zcn 12211 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
13 | 2cnd 11938 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℂ) | |
14 | 12, 13 | mulcomd 10884 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) |
15 | 14 | eqeq1d 2741 | . . . . 5 ⊢ (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝑁 ↔ (2 · 𝑛) = 𝑁)) |
16 | 15 | rexbiia 3177 | . . . 4 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
17 | 11, 16 | bitrdi 290 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
18 | 2, 17 | mpan 690 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
19 | 1, 10, 18 | pm5.21nii 383 | 1 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 class class class wbr 5070 (class class class)co 7235 · cmul 10764 2c2 11915 ℤcz 12206 ∥ cdvds 15848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-ltxr 10902 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-n0 12121 df-z 12207 df-dvds 15849 |
This theorem is referenced by: evennn02n 15944 evennn2n 15945 m1expe 15968 |
Copyright terms: Public domain | W3C validator |