| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmrn | Structured version Visualization version GIF version | ||
| Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| fdmrn | ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | df-f 6518 | . . 3 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 4 | eqid 2730 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
| 5 | df-fn 6517 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
| 7 | 3, 6 | bitr2i 276 | 1 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3917 dom cdm 5641 ran crn 5642 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-fn 6517 df-f 6518 |
| This theorem is referenced by: funcofd 6723 nvof1o 7258 umgrwwlks2on 29894 rinvf1o 32561 smatrcl 33793 locfinref 33838 lfuhgr 35112 limccog 45625 funfocofob 47083 grimuhgr 47891 isuspgrim0lem 47897 |
| Copyright terms: Public domain | W3C validator |