MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmrn Structured version   Visualization version   GIF version

Theorem fdmrn 6616
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fdmrn (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)

Proof of Theorem fdmrn
StepHypRef Expression
1 ssid 3939 . . 3 ran 𝐹 ⊆ ran 𝐹
2 df-f 6422 . . 3 (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹))
31, 2mpbiran2 706 . 2 (𝐹:dom 𝐹⟶ran 𝐹𝐹 Fn dom 𝐹)
4 eqid 2738 . . 3 dom 𝐹 = dom 𝐹
5 df-fn 6421 . . 3 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 706 . 2 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
73, 6bitr2i 275 1 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wss 3883  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-fn 6421  df-f 6422
This theorem is referenced by:  funcofd  6617  fco3OLD  6618  nvof1o  7133  umgrwwlks2on  28223  rinvf1o  30866  smatrcl  31648  locfinref  31693  lfuhgr  32979  limccog  43051  funfocofob  44457
  Copyright terms: Public domain W3C validator