MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmrn Structured version   Visualization version   GIF version

Theorem fdmrn 6722
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fdmrn (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)

Proof of Theorem fdmrn
StepHypRef Expression
1 ssid 3972 . . 3 ran 𝐹 ⊆ ran 𝐹
2 df-f 6518 . . 3 (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹))
31, 2mpbiran2 710 . 2 (𝐹:dom 𝐹⟶ran 𝐹𝐹 Fn dom 𝐹)
4 eqid 2730 . . 3 dom 𝐹 = dom 𝐹
5 df-fn 6517 . . 3 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 710 . 2 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
73, 6bitr2i 276 1 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wss 3917  dom cdm 5641  ran crn 5642  Fun wfun 6508   Fn wfn 6509  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3934  df-fn 6517  df-f 6518
This theorem is referenced by:  funcofd  6723  nvof1o  7258  umgrwwlks2on  29894  rinvf1o  32561  smatrcl  33793  locfinref  33838  lfuhgr  35112  limccog  45625  funfocofob  47083  grimuhgr  47891  isuspgrim0lem  47897
  Copyright terms: Public domain W3C validator