MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmrn Structured version   Visualization version   GIF version

Theorem fdmrn 6779
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fdmrn (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)

Proof of Theorem fdmrn
StepHypRef Expression
1 ssid 4031 . . 3 ran 𝐹 ⊆ ran 𝐹
2 df-f 6577 . . 3 (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹))
31, 2mpbiran2 709 . 2 (𝐹:dom 𝐹⟶ran 𝐹𝐹 Fn dom 𝐹)
4 eqid 2740 . . 3 dom 𝐹 = dom 𝐹
5 df-fn 6576 . . 3 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 709 . 2 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
73, 6bitr2i 276 1 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wss 3976  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-fn 6576  df-f 6577
This theorem is referenced by:  funcofd  6780  fco3OLD  6781  nvof1o  7316  umgrwwlks2on  29990  rinvf1o  32649  smatrcl  33742  locfinref  33787  lfuhgr  35085  limccog  45541  funfocofob  46993  isuspgrim0lem  47755  grimuhgr  47762
  Copyright terms: Public domain W3C validator