MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmrn Structured version   Visualization version   GIF version

Theorem fdmrn 6365
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fdmrn (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)

Proof of Theorem fdmrn
StepHypRef Expression
1 ssid 3874 . . 3 ran 𝐹 ⊆ ran 𝐹
2 df-f 6190 . . 3 (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹))
31, 2mpbiran2 698 . 2 (𝐹:dom 𝐹⟶ran 𝐹𝐹 Fn dom 𝐹)
4 eqid 2773 . . 3 dom 𝐹 = dom 𝐹
5 df-fn 6189 . . 3 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 698 . 2 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
73, 6bitr2i 268 1 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1508  wss 3824  dom cdm 5404  ran crn 5405  Fun wfun 6180   Fn wfn 6181  wf 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2745
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2754  df-cleq 2766  df-clel 2841  df-in 3831  df-ss 3838  df-fn 6189  df-f 6190
This theorem is referenced by:  nvof1o  6861  umgrwwlks2on  27479  rinvf1o  30156  smatrcl  30736  locfinref  30782  fco3  40947  limccog  41362
  Copyright terms: Public domain W3C validator