![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmrn | Structured version Visualization version GIF version |
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
fdmrn | ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3874 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | df-f 6190 | . . 3 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
3 | 1, 2 | mpbiran2 698 | . 2 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ 𝐹 Fn dom 𝐹) |
4 | eqid 2773 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
5 | df-fn 6189 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
6 | 4, 5 | mpbiran2 698 | . 2 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
7 | 3, 6 | bitr2i 268 | 1 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1508 ⊆ wss 3824 dom cdm 5404 ran crn 5405 Fun wfun 6180 Fn wfn 6181 ⟶wf 6182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-in 3831 df-ss 3838 df-fn 6189 df-f 6190 |
This theorem is referenced by: nvof1o 6861 umgrwwlks2on 27479 rinvf1o 30156 smatrcl 30736 locfinref 30782 fco3 40947 limccog 41362 |
Copyright terms: Public domain | W3C validator |