![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmrn | Structured version Visualization version GIF version |
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
fdmrn | ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | df-f 6577 | . . 3 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
3 | 1, 2 | mpbiran2 709 | . 2 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ 𝐹 Fn dom 𝐹) |
4 | eqid 2740 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
5 | df-fn 6576 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
6 | 4, 5 | mpbiran2 709 | . 2 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
7 | 3, 6 | bitr2i 276 | 1 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊆ wss 3976 dom cdm 5700 ran crn 5701 Fun wfun 6567 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-fn 6576 df-f 6577 |
This theorem is referenced by: funcofd 6780 fco3OLD 6781 nvof1o 7316 umgrwwlks2on 29990 rinvf1o 32649 smatrcl 33742 locfinref 33787 lfuhgr 35085 limccog 45541 funfocofob 46993 isuspgrim0lem 47755 grimuhgr 47762 |
Copyright terms: Public domain | W3C validator |