| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmrn | Structured version Visualization version GIF version | ||
| Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| fdmrn | ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | df-f 6480 | . . 3 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 4 | eqid 2731 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
| 5 | df-fn 6479 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
| 7 | 3, 6 | bitr2i 276 | 1 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3897 dom cdm 5611 ran crn 5612 Fun wfun 6470 Fn wfn 6471 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-fn 6479 df-f 6480 |
| This theorem is referenced by: funcofd 6678 nvof1o 7209 umgrwwlks2on 29930 rinvf1o 32604 smatrcl 33801 locfinref 33846 lfuhgr 35154 limccog 45660 funfocofob 47109 grimuhgr 47918 isuspgrim0lem 47924 |
| Copyright terms: Public domain | W3C validator |