Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmrn | Structured version Visualization version GIF version |
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
fdmrn | ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | df-f 6422 | . . 3 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
3 | 1, 2 | mpbiran2 706 | . 2 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 ↔ 𝐹 Fn dom 𝐹) |
4 | eqid 2738 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
5 | df-fn 6421 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
6 | 4, 5 | mpbiran2 706 | . 2 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
7 | 3, 6 | bitr2i 275 | 1 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3883 dom cdm 5580 ran crn 5581 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-fn 6421 df-f 6422 |
This theorem is referenced by: funcofd 6617 fco3OLD 6618 nvof1o 7133 umgrwwlks2on 28223 rinvf1o 30866 smatrcl 31648 locfinref 31693 lfuhgr 32979 limccog 43051 funfocofob 44457 |
Copyright terms: Public domain | W3C validator |