| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcofd | Structured version Visualization version GIF version | ||
| Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| funcofd.1 | ⊢ (𝜑 → Fun 𝐹) |
| funcofd.2 | ⊢ (𝜑 → Fun 𝐺) |
| Ref | Expression |
|---|---|
| funcofd | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcofd.1 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | fdmrn 6748 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ran 𝐹) |
| 4 | funcofd.2 | . 2 ⊢ (𝜑 → Fun 𝐺) | |
| 5 | fcof 6740 | . 2 ⊢ ((𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ◡ccnv 5666 dom cdm 5667 ran crn 5668 “ cima 5670 ∘ ccom 5671 Fun wfun 6536 ⟶wf 6538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-fun 6544 df-fn 6545 df-f 6546 |
| This theorem is referenced by: smfco 46762 |
| Copyright terms: Public domain | W3C validator |