MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcofd Structured version   Visualization version   GIF version

Theorem funcofd 6751
Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.)
Hypotheses
Ref Expression
funcofd.1 (πœ‘ β†’ Fun 𝐹)
funcofd.2 (πœ‘ β†’ Fun 𝐺)
Assertion
Ref Expression
funcofd (πœ‘ β†’ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran 𝐹)

Proof of Theorem funcofd
StepHypRef Expression
1 funcofd.1 . . 3 (πœ‘ β†’ Fun 𝐹)
2 fdmrn 6750 . . 3 (Fun 𝐹 ↔ 𝐹:dom 𝐹⟢ran 𝐹)
31, 2sylib 217 . 2 (πœ‘ β†’ 𝐹:dom 𝐹⟢ran 𝐹)
4 funcofd.2 . 2 (πœ‘ β†’ Fun 𝐺)
5 fcof 6741 . 2 ((𝐹:dom 𝐹⟢ran 𝐹 ∧ Fun 𝐺) β†’ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran 𝐹)
63, 4, 5syl2anc 585 1 (πœ‘ β†’ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4  β—‘ccnv 5676  dom cdm 5677  ran crn 5678   β€œ cima 5680   ∘ ccom 5681  Fun wfun 6538  βŸΆwf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  smfco  45518
  Copyright terms: Public domain W3C validator