MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcofd Structured version   Visualization version   GIF version

Theorem funcofd 6702
Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.)
Hypotheses
Ref Expression
funcofd.1 (𝜑 → Fun 𝐹)
funcofd.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
funcofd (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem funcofd
StepHypRef Expression
1 funcofd.1 . . 3 (𝜑 → Fun 𝐹)
2 fdmrn 6701 . . 3 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
31, 2sylib 218 . 2 (𝜑𝐹:dom 𝐹⟶ran 𝐹)
4 funcofd.2 . 2 (𝜑 → Fun 𝐺)
5 fcof 6693 . 2 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
63, 4, 5syl2anc 584 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  Fun wfun 6493  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503
This theorem is referenced by:  smfco  46773
  Copyright terms: Public domain W3C validator