![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcofd | Structured version Visualization version GIF version |
Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
funcofd.1 | β’ (π β Fun πΉ) |
funcofd.2 | β’ (π β Fun πΊ) |
Ref | Expression |
---|---|
funcofd | β’ (π β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcofd.1 | . . 3 β’ (π β Fun πΉ) | |
2 | fdmrn 6742 | . . 3 β’ (Fun πΉ β πΉ:dom πΉβΆran πΉ) | |
3 | 1, 2 | sylib 217 | . 2 β’ (π β πΉ:dom πΉβΆran πΉ) |
4 | funcofd.2 | . 2 β’ (π β Fun πΊ) | |
5 | fcof 6733 | . 2 β’ ((πΉ:dom πΉβΆran πΉ β§ Fun πΊ) β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran πΉ) | |
6 | 3, 4, 5 | syl2anc 583 | 1 β’ (π β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β‘ccnv 5668 dom cdm 5669 ran crn 5670 β cima 5672 β ccom 5673 Fun wfun 6530 βΆwf 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fun 6538 df-fn 6539 df-f 6540 |
This theorem is referenced by: smfco 46072 |
Copyright terms: Public domain | W3C validator |