| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcofd | Structured version Visualization version GIF version | ||
| Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| funcofd.1 | ⊢ (𝜑 → Fun 𝐹) |
| funcofd.2 | ⊢ (𝜑 → Fun 𝐺) |
| Ref | Expression |
|---|---|
| funcofd | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcofd.1 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | fdmrn 6677 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ran 𝐹) |
| 4 | funcofd.2 | . 2 ⊢ (𝜑 → Fun 𝐺) | |
| 5 | fcof 6669 | . 2 ⊢ ((𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ◡ccnv 5610 dom cdm 5611 ran crn 5612 “ cima 5614 ∘ ccom 5615 Fun wfun 6470 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: smfco 46840 |
| Copyright terms: Public domain | W3C validator |