MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcofd Structured version   Visualization version   GIF version

Theorem funcofd 6691
Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.)
Hypotheses
Ref Expression
funcofd.1 (𝜑 → Fun 𝐹)
funcofd.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
funcofd (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem funcofd
StepHypRef Expression
1 funcofd.1 . . 3 (𝜑 → Fun 𝐹)
2 fdmrn 6690 . . 3 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
31, 2sylib 218 . 2 (𝜑𝐹:dom 𝐹⟶ran 𝐹)
4 funcofd.2 . 2 (𝜑 → Fun 𝐺)
5 fcof 6682 . 2 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
63, 4, 5syl2anc 584 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 5620  dom cdm 5621  ran crn 5622  cima 5624  ccom 5625  Fun wfun 6483  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  smfco  46962
  Copyright terms: Public domain W3C validator