| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcofd | Structured version Visualization version GIF version | ||
| Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| funcofd.1 | ⊢ (𝜑 → Fun 𝐹) |
| funcofd.2 | ⊢ (𝜑 → Fun 𝐺) |
| Ref | Expression |
|---|---|
| funcofd | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcofd.1 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | fdmrn 6742 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ran 𝐹) |
| 4 | funcofd.2 | . 2 ⊢ (𝜑 → Fun 𝐺) | |
| 5 | fcof 6734 | . 2 ⊢ ((𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 ∘ ccom 5663 Fun wfun 6530 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: smfco 46811 |
| Copyright terms: Public domain | W3C validator |