MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcofd Structured version   Visualization version   GIF version

Theorem funcofd 6769
Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.)
Hypotheses
Ref Expression
funcofd.1 (𝜑 → Fun 𝐹)
funcofd.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
funcofd (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem funcofd
StepHypRef Expression
1 funcofd.1 . . 3 (𝜑 → Fun 𝐹)
2 fdmrn 6768 . . 3 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
31, 2sylib 218 . 2 (𝜑𝐹:dom 𝐹⟶ran 𝐹)
4 funcofd.2 . 2 (𝜑 → Fun 𝐺)
5 fcof 6760 . 2 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
63, 4, 5syl2anc 584 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  ccom 5693  Fun wfun 6557  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  smfco  46758
  Copyright terms: Public domain W3C validator