MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwwlks2on Structured version   Visualization version   GIF version

Theorem umgrwwlks2on 29990
Description: A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases 𝐴 = 𝐵 and/or 𝐵 = 𝐶 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypotheses
Ref Expression
s3wwlks2on.v 𝑉 = (Vtx‘𝐺)
usgrwwlks2on.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrwwlks2on ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem umgrwwlks2on
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgrupgr 29138 . . . 4 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
21adantr 480 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 481 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr3 1196 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
6 s3wwlks2on.v . . . 4 𝑉 = (Vtx‘𝐺)
76s3wwlks2on 29989 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
82, 4, 5, 7syl3anc 1371 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
9 eqid 2740 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
106, 9upgr2wlk 29704 . . . . . . 7 (𝐺 ∈ UPGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
111, 10syl 17 . . . . . 6 (𝐺 ∈ UMGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
1211adantr 480 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
13 s3fv0 14940 . . . . . . . . . . . 12 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
14133ad2ant1 1133 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
15 s3fv1 14941 . . . . . . . . . . . 12 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
16153ad2ant2 1134 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
1714, 16preq12d 4766 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} = {𝐴, 𝐵})
1817eqeq2d 2751 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ↔ ((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵}))
19 s3fv2 14942 . . . . . . . . . . . 12 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
20193ad2ant3 1135 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
2116, 20preq12d 4766 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} = {𝐵, 𝐶})
2221eqeq2d 2751 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} ↔ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))
2318, 22anbi12d 631 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
2423adantl 481 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
25243anbi3d 1442 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))))
26 umgruhgr 29139 . . . . . . . . . . 11 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
279uhgrfun 29101 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
28 fdmrn 6779 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
29 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
30 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 𝑓:(0..^2)⟶dom (iEdg‘𝐺))
31 c0ex 11284 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
3231prid1 4787 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ {0, 1}
33 fzo0to2pr 13801 . . . . . . . . . . . . . . . . . . . . 21 (0..^2) = {0, 1}
3432, 33eleqtrri 2843 . . . . . . . . . . . . . . . . . . . 20 0 ∈ (0..^2)
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 0 ∈ (0..^2))
3630, 35ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3829, 37ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺))
39 1ex 11286 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
4039prid2 4788 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ {0, 1}
4140, 33eleqtrri 2843 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (0..^2)
4241a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 1 ∈ (0..^2))
4330, 42ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4443adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4529, 44ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))
4638, 45jca 511 . . . . . . . . . . . . . . 15 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
4746ex 412 . . . . . . . . . . . . . 14 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
48473ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
4948com12 32 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5028, 49sylbi 217 . . . . . . . . . . 11 (Fun (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5126, 27, 503syl 18 . . . . . . . . . 10 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5251imp 406 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
53 eqcom 2747 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5453biimpi 216 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5554adantr 480 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
56553ad2ant3 1135 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5756adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
58 usgrwwlks2on.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
59 edgval 29084 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
6058, 59eqtri 2768 . . . . . . . . . . . 12 𝐸 = ran (iEdg‘𝐺)
6160a1i 11 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → 𝐸 = ran (iEdg‘𝐺))
6257, 61eleq12d 2838 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺)))
63 eqcom 2747 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} ↔ {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6463biimpi 216 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6564adantl 481 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
66653ad2ant3 1135 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6766adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6867, 61eleq12d 2838 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐵, 𝐶} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
6962, 68anbi12d 631 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
7052, 69mpbird 257 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7170ex 412 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7271adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7325, 72sylbid 240 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7412, 73sylbid 240 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7574exlimdv 1932 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7658umgr2wlk 29982 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
77 wlklenvp1 29654 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
78 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
79 2p1e3 12435 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
8078, 79eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = 3)
8180adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((♯‘𝑓) + 1) = 3)
8277, 81sylan9eq 2800 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (♯‘𝑝) = 3)
83 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = (𝑝‘0) ↔ (𝑝‘0) = 𝐴)
84 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 = (𝑝‘1) ↔ (𝑝‘1) = 𝐵)
85 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 = (𝑝‘2) ↔ (𝑝‘2) = 𝐶)
8683, 84, 853anbi123i 1155 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8786biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8887adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8988adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
9082, 89jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶)))
916wlkpwrd 29653 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9280eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) = 2 → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
94 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
95 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑝) = 3 → (0..^(♯‘𝑝)) = (0..^3))
96 fzo0to3tp 13802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^3) = {0, 1, 2}
9795, 96eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((♯‘𝑝) = 3 → (0..^(♯‘𝑝)) = {0, 1, 2})
9831tpid1 4793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 0 ∈ {0, 1, 2}
99 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (0 ∈ (0..^(♯‘𝑝)) ↔ 0 ∈ {0, 1, 2}))
10098, 99mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 0 ∈ (0..^(♯‘𝑝)))
101 wrdsymbcl 14575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑝))) → (𝑝‘0) ∈ 𝑉)
102100, 101sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘0) ∈ 𝑉)
10339tpid2 4795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ {0, 1, 2}
104 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (1 ∈ (0..^(♯‘𝑝)) ↔ 1 ∈ {0, 1, 2}))
105103, 104mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 1 ∈ (0..^(♯‘𝑝)))
106 wrdsymbcl 14575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑝))) → (𝑝‘1) ∈ 𝑉)
107105, 106sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘1) ∈ 𝑉)
108 2ex 12370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ V
109108tpid3 4798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ {0, 1, 2}
110 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (2 ∈ (0..^(♯‘𝑝)) ↔ 2 ∈ {0, 1, 2}))
111109, 110mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 2 ∈ (0..^(♯‘𝑝)))
112 wrdsymbcl 14575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑝))) → (𝑝‘2) ∈ 𝑉)
113111, 112sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘2) ∈ 𝑉)
114102, 107, 1133jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
11597, 114sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
1161153adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
117 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = (𝑝‘0) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
1181173ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
119 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 = (𝑝‘1) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
1201193ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
121 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐶 = (𝑝‘2) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
1221213ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
123118, 120, 1223anbi123d 1436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
1241233ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
125116, 124mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝐴𝑉𝐵𝑉𝐶𝑉))
12694, 125jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
1271263exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ Word 𝑉 → ((♯‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
12993, 128sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
130129impancom 451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = ((♯‘𝑓) + 1)) → ((♯‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
131130impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = ((♯‘𝑓) + 1)) → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
13291, 77, 131syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
133132imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
134 eqwrds3 15010 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
13690, 135mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑝 = ⟨“𝐴𝐵𝐶”⟩)
137136breq2d 5178 . . . . . . . . . . . . . . . 16 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
138137biimpd 229 . . . . . . . . . . . . . . 15 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
139138ex 412 . . . . . . . . . . . . . 14 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)))
140139pm2.43a 54 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
1411403impib 1116 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
143 simpr2 1195 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (♯‘𝑓) = 2)
144142, 143jca 511 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))
145144ex 412 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
146145exlimdv 1932 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
147146eximdv 1916 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
14876, 147syl5com 31 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
1491483expib 1122 . . . . 5 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))))
150149com23 86 . . . 4 (𝐺 ∈ UMGraph → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))))
151150imp 406 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
15275, 151impbid 212 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
1538, 152bitrd 279 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cpr 4650  {ctp 4652   class class class wbr 5166  dom cdm 5700  ran crn 5701  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  2c2 12348  3c3 12349  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs3 14891  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UHGraphcuhgr 29091  UPGraphcupgr 29115  UMGraphcumgr 29116  Walkscwlks 29632   WWalksNOn cwwlksnon 29860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-umgr 29118  df-wlks 29635  df-wwlks 29863  df-wwlksn 29864  df-wwlksnon 29865
This theorem is referenced by:  wwlks2onsym  29991  usgr2wspthons3  29997  frgr2wwlkeu  30359
  Copyright terms: Public domain W3C validator