Step | Hyp | Ref
| Expression |
1 | | umgrupgr 28352 |
. . . 4
β’ (πΊ β UMGraph β πΊ β
UPGraph) |
2 | 1 | adantr 481 |
. . 3
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΊ β UPGraph) |
3 | | simp1 1136 |
. . . 4
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β π΄ β π) |
4 | 3 | adantl 482 |
. . 3
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β π΄ β π) |
5 | | simpr3 1196 |
. . 3
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΆ β π) |
6 | | s3wwlks2on.v |
. . . 4
β’ π = (VtxβπΊ) |
7 | 6 | s3wwlks2on 29199 |
. . 3
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
8 | 2, 4, 5, 7 | syl3anc 1371 |
. 2
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
9 | | eqid 2732 |
. . . . . . . 8
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
10 | 6, 9 | upgr2wlk 28914 |
. . . . . . 7
β’ (πΊ β UPGraph β ((π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)})))) |
11 | 1, 10 | syl 17 |
. . . . . 6
β’ (πΊ β UMGraph β ((π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)})))) |
12 | 11 | adantr 481 |
. . . . 5
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)})))) |
13 | | s3fv0 14838 |
. . . . . . . . . . . 12
β’ (π΄ β π β (β¨βπ΄π΅πΆββ©β0) = π΄) |
14 | 13 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ©β0) = π΄) |
15 | | s3fv1 14839 |
. . . . . . . . . . . 12
β’ (π΅ β π β (β¨βπ΄π΅πΆββ©β1) = π΅) |
16 | 15 | 3ad2ant2 1134 |
. . . . . . . . . . 11
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ©β1) = π΅) |
17 | 14, 16 | preq12d 4744 |
. . . . . . . . . 10
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} = {π΄, π΅}) |
18 | 17 | eqeq2d 2743 |
. . . . . . . . 9
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β
((iEdgβπΊ)β(πβ0)) = {π΄, π΅})) |
19 | | s3fv2 14840 |
. . . . . . . . . . . 12
β’ (πΆ β π β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
20 | 19 | 3ad2ant3 1135 |
. . . . . . . . . . 11
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
21 | 16, 20 | preq12d 4744 |
. . . . . . . . . 10
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)} = {π΅, πΆ}) |
22 | 21 | eqeq2d 2743 |
. . . . . . . . 9
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)} β
((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) |
23 | 18, 22 | anbi12d 631 |
. . . . . . . 8
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β ((((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)}) β
(((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) |
24 | 23 | adantl 482 |
. . . . . . 7
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)}) β
(((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) |
25 | 24 | 3anbi3d 1442 |
. . . . . 6
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π:(0..^2)βΆdom (iEdgβπΊ) β§ β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)})) β (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})))) |
26 | | umgruhgr 28353 |
. . . . . . . . . . 11
β’ (πΊ β UMGraph β πΊ β
UHGraph) |
27 | 9 | uhgrfun 28315 |
. . . . . . . . . . 11
β’ (πΊ β UHGraph β Fun
(iEdgβπΊ)) |
28 | | fdmrn 6746 |
. . . . . . . . . . . 12
β’ (Fun
(iEdgβπΊ) β
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) |
29 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) β
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) |
30 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
β’ (π:(0..^2)βΆdom
(iEdgβπΊ) β π:(0..^2)βΆdom
(iEdgβπΊ)) |
31 | | c0ex 11204 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ 0 β
V |
32 | 31 | prid1 4765 |
. . . . . . . . . . . . . . . . . . . . 21
β’ 0 β
{0, 1} |
33 | | fzo0to2pr 13713 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (0..^2) =
{0, 1} |
34 | 32, 33 | eleqtrri 2832 |
. . . . . . . . . . . . . . . . . . . 20
β’ 0 β
(0..^2) |
35 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
β’ (π:(0..^2)βΆdom
(iEdgβπΊ) β 0
β (0..^2)) |
36 | 30, 35 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . 18
β’ (π:(0..^2)βΆdom
(iEdgβπΊ) β
(πβ0) β dom
(iEdgβπΊ)) |
37 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) β
(πβ0) β dom
(iEdgβπΊ)) |
38 | 29, 37 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . 16
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) β
((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ)) |
39 | | 1ex 11206 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ 1 β
V |
40 | 39 | prid2 4766 |
. . . . . . . . . . . . . . . . . . . . 21
β’ 1 β
{0, 1} |
41 | 40, 33 | eleqtrri 2832 |
. . . . . . . . . . . . . . . . . . . 20
β’ 1 β
(0..^2) |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
β’ (π:(0..^2)βΆdom
(iEdgβπΊ) β 1
β (0..^2)) |
43 | 30, 42 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . 18
β’ (π:(0..^2)βΆdom
(iEdgβπΊ) β
(πβ1) β dom
(iEdgβπΊ)) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) β
(πβ1) β dom
(iEdgβπΊ)) |
45 | 29, 44 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . 16
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) β
((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)) |
46 | 38, 45 | jca 512 |
. . . . . . . . . . . . . . 15
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ)) β
(((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ))) |
47 | 46 | ex 413 |
. . . . . . . . . . . . . 14
β’ (π:(0..^2)βΆdom
(iEdgβπΊ) β
((iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ) β
(((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)))) |
48 | 47 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β ((iEdgβπΊ):dom (iEdgβπΊ)βΆran (iEdgβπΊ) β (((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)))) |
49 | 48 | com12 32 |
. . . . . . . . . . . 12
β’
((iEdgβπΊ):dom
(iEdgβπΊ)βΆran
(iEdgβπΊ) β
((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β (((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)))) |
50 | 28, 49 | sylbi 216 |
. . . . . . . . . . 11
β’ (Fun
(iEdgβπΊ) β
((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β (((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)))) |
51 | 26, 27, 50 | 3syl 18 |
. . . . . . . . . 10
β’ (πΊ β UMGraph β ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β (((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)))) |
52 | 51 | imp 407 |
. . . . . . . . 9
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β (((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ))) |
53 | | eqcom 2739 |
. . . . . . . . . . . . . . 15
β’
(((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β {π΄, π΅} = ((iEdgβπΊ)β(πβ0))) |
54 | 53 | biimpi 215 |
. . . . . . . . . . . . . 14
β’
(((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β {π΄, π΅} = ((iEdgβπΊ)β(πβ0))) |
55 | 54 | adantr 481 |
. . . . . . . . . . . . 13
β’
((((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}) β {π΄, π΅} = ((iEdgβπΊ)β(πβ0))) |
56 | 55 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β {π΄, π΅} = ((iEdgβπΊ)β(πβ0))) |
57 | 56 | adantl 482 |
. . . . . . . . . . 11
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β {π΄, π΅} = ((iEdgβπΊ)β(πβ0))) |
58 | | usgrwwlks2on.e |
. . . . . . . . . . . . 13
β’ πΈ = (EdgβπΊ) |
59 | | edgval 28298 |
. . . . . . . . . . . . 13
β’
(EdgβπΊ) = ran
(iEdgβπΊ) |
60 | 58, 59 | eqtri 2760 |
. . . . . . . . . . . 12
β’ πΈ = ran (iEdgβπΊ) |
61 | 60 | a1i 11 |
. . . . . . . . . . 11
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β πΈ = ran (iEdgβπΊ)) |
62 | 57, 61 | eleq12d 2827 |
. . . . . . . . . 10
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β ({π΄, π΅} β πΈ β ((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ))) |
63 | | eqcom 2739 |
. . . . . . . . . . . . . . 15
β’
(((iEdgβπΊ)β(πβ1)) = {π΅, πΆ} β {π΅, πΆ} = ((iEdgβπΊ)β(πβ1))) |
64 | 63 | biimpi 215 |
. . . . . . . . . . . . . 14
β’
(((iEdgβπΊ)β(πβ1)) = {π΅, πΆ} β {π΅, πΆ} = ((iEdgβπΊ)β(πβ1))) |
65 | 64 | adantl 482 |
. . . . . . . . . . . . 13
β’
((((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}) β {π΅, πΆ} = ((iEdgβπΊ)β(πβ1))) |
66 | 65 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
β’ ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β {π΅, πΆ} = ((iEdgβπΊ)β(πβ1))) |
67 | 66 | adantl 482 |
. . . . . . . . . . 11
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β {π΅, πΆ} = ((iEdgβπΊ)β(πβ1))) |
68 | 67, 61 | eleq12d 2827 |
. . . . . . . . . 10
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β ({π΅, πΆ} β πΈ β ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ))) |
69 | 62, 68 | anbi12d 631 |
. . . . . . . . 9
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β (({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β (((iEdgβπΊ)β(πβ0)) β ran (iEdgβπΊ) β§ ((iEdgβπΊ)β(πβ1)) β ran (iEdgβπΊ)))) |
70 | 52, 69 | mpbird 256 |
. . . . . . . 8
β’ ((πΊ β UMGraph β§ (π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ}))) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ)) |
71 | 70 | ex 413 |
. . . . . . 7
β’ (πΊ β UMGraph β ((π:(0..^2)βΆdom
(iEdgβπΊ) β§
β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
72 | 71 | adantr 481 |
. . . . . 6
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π:(0..^2)βΆdom (iEdgβπΊ) β§ β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {π΄, π΅} β§ ((iEdgβπΊ)β(πβ1)) = {π΅, πΆ})) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
73 | 25, 72 | sylbid 239 |
. . . . 5
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π:(0..^2)βΆdom (iEdgβπΊ) β§ β¨βπ΄π΅πΆββ©:(0...2)βΆπ β§ (((iEdgβπΊ)β(πβ0)) = {(β¨βπ΄π΅πΆββ©β0), (β¨βπ΄π΅πΆββ©β1)} β§
((iEdgβπΊ)β(πβ1)) = {(β¨βπ΄π΅πΆββ©β1), (β¨βπ΄π΅πΆββ©β2)})) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
74 | 12, 73 | sylbid 239 |
. . . 4
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
75 | 74 | exlimdv 1936 |
. . 3
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
76 | 58 | umgr2wlk 29192 |
. . . . . . 7
β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β βπβπ(π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) |
77 | | wlklenvp1 28864 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π(WalksβπΊ)π β (β―βπ) = ((β―βπ) + 1)) |
78 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπ) =
2 β ((β―βπ)
+ 1) = (2 + 1)) |
79 | | 2p1e3 12350 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (2 + 1) =
3 |
80 | 78, 79 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπ) =
2 β ((β―βπ)
+ 1) = 3) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπ)
= 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β ((β―βπ) + 1) = 3) |
82 | 77, 81 | sylan9eq 2792 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (β―βπ) = 3) |
83 | | eqcom 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π΄ = (πβ0) β (πβ0) = π΄) |
84 | | eqcom 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π΅ = (πβ1) β (πβ1) = π΅) |
85 | | eqcom 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΆ = (πβ2) β (πβ2) = πΆ) |
86 | 83, 84, 85 | 3anbi123i 1155 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ)) |
87 | 86 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ)) |
88 | 87 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπ)
= 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ)) |
89 | 88 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ)) |
90 | 82, 89 | jca 512 |
. . . . . . . . . . . . . . . . . 18
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β ((β―βπ) = 3 β§ ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ))) |
91 | 6 | wlkpwrd 28863 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π(WalksβπΊ)π β π β Word π) |
92 | 80 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((β―βπ) =
2 β ((β―βπ)
= ((β―βπ) + 1)
β (β―βπ) =
3)) |
93 | 92 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β Word π β§ (β―βπ) = 2) β ((β―βπ) = ((β―βπ) + 1) β
(β―βπ) =
3)) |
94 | | simp1 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β Word π β§ (β―βπ) = 3 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β π β Word π) |
95 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
((β―βπ) =
3 β (0..^(β―βπ)) = (0..^3)) |
96 | | fzo0to3tp 13714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (0..^3) =
{0, 1, 2} |
97 | 95, 96 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
((β―βπ) =
3 β (0..^(β―βπ)) = {0, 1, 2}) |
98 | 31 | tpid1 4771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ 0 β
{0, 1, 2} |
99 | | eleq2 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
((0..^(β―βπ)) = {0, 1, 2} β (0 β
(0..^(β―βπ))
β 0 β {0, 1, 2})) |
100 | 98, 99 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((0..^(β―βπ)) = {0, 1, 2} β 0 β
(0..^(β―βπ))) |
101 | | wrdsymbcl 14473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β Word π β§ 0 β (0..^(β―βπ))) β (πβ0) β π) |
102 | 100, 101 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β Word π β§ (0..^(β―βπ)) = {0, 1, 2}) β (πβ0) β π) |
103 | 39 | tpid2 4773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ 1 β
{0, 1, 2} |
104 | | eleq2 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
((0..^(β―βπ)) = {0, 1, 2} β (1 β
(0..^(β―βπ))
β 1 β {0, 1, 2})) |
105 | 103, 104 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((0..^(β―βπ)) = {0, 1, 2} β 1 β
(0..^(β―βπ))) |
106 | | wrdsymbcl 14473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β Word π β§ 1 β (0..^(β―βπ))) β (πβ1) β π) |
107 | 105, 106 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β Word π β§ (0..^(β―βπ)) = {0, 1, 2}) β (πβ1) β π) |
108 | | 2ex 12285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ 2 β
V |
109 | 108 | tpid3 4776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ 2 β
{0, 1, 2} |
110 | | eleq2 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
((0..^(β―βπ)) = {0, 1, 2} β (2 β
(0..^(β―βπ))
β 2 β {0, 1, 2})) |
111 | 109, 110 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((0..^(β―βπ)) = {0, 1, 2} β 2 β
(0..^(β―βπ))) |
112 | | wrdsymbcl 14473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β Word π β§ 2 β (0..^(β―βπ))) β (πβ2) β π) |
113 | 111, 112 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β Word π β§ (0..^(β―βπ)) = {0, 1, 2}) β (πβ2) β π) |
114 | 102, 107,
113 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β Word π β§ (0..^(β―βπ)) = {0, 1, 2}) β ((πβ0) β π β§ (πβ1) β π β§ (πβ2) β π)) |
115 | 97, 114 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β Word π β§ (β―βπ) = 3) β ((πβ0) β π β§ (πβ1) β π β§ (πβ2) β π)) |
116 | 115 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β Word π β§ (β―βπ) = 3 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β ((πβ0) β π β§ (πβ1) β π β§ (πβ2) β π)) |
117 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π΄ = (πβ0) β (π΄ β π β (πβ0) β π)) |
118 | 117 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (π΄ β π β (πβ0) β π)) |
119 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π΅ = (πβ1) β (π΅ β π β (πβ1) β π)) |
120 | 119 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (π΅ β π β (πβ1) β π)) |
121 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (πΆ = (πβ2) β (πΆ β π β (πβ2) β π)) |
122 | 121 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (πΆ β π β (πβ2) β π)) |
123 | 118, 120,
122 | 3anbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β ((π΄ β π β§ π΅ β π β§ πΆ β π) β ((πβ0) β π β§ (πβ1) β π β§ (πβ2) β π))) |
124 | 123 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β Word π β§ (β―βπ) = 3 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β ((π΄ β π β§ π΅ β π β§ πΆ β π) β ((πβ0) β π β§ (πβ1) β π β§ (πβ2) β π))) |
125 | 116, 124 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β Word π β§ (β―βπ) = 3 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π΄ β π β§ π΅ β π β§ πΆ β π)) |
126 | 94, 125 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β Word π β§ (β―βπ) = 3 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π))) |
127 | 126 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π β Word π β ((β―βπ) = 3 β ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π))))) |
128 | 127 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β Word π β§ (β―βπ) = 2) β ((β―βπ) = 3 β ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π))))) |
129 | 93, 128 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β Word π β§ (β―βπ) = 2) β ((β―βπ) = ((β―βπ) + 1) β ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π))))) |
130 | 129 | impancom 452 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β Word π β§ (β―βπ) = ((β―βπ) + 1)) β ((β―βπ) = 2 β ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π))))) |
131 | 130 | impd 411 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Word π β§ (β―βπ) = ((β―βπ) + 1)) β (((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π)))) |
132 | 91, 77, 131 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π(WalksβπΊ)π β (((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π)))) |
133 | 132 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π))) |
134 | | eqwrds3 14908 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β Word π β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π = β¨βπ΄π΅πΆββ© β ((β―βπ) = 3 β§ ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ)))) |
135 | 133, 134 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (π = β¨βπ΄π΅πΆββ© β ((β―βπ) = 3 β§ ((πβ0) = π΄ β§ (πβ1) = π΅ β§ (πβ2) = πΆ)))) |
136 | 90, 135 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β π = β¨βπ΄π΅πΆββ©) |
137 | 136 | breq2d 5159 |
. . . . . . . . . . . . . . . 16
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (π(WalksβπΊ)π β π(WalksβπΊ)β¨βπ΄π΅πΆββ©)) |
138 | 137 | biimpd 228 |
. . . . . . . . . . . . . . 15
β’ ((π(WalksβπΊ)π β§ ((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (π(WalksβπΊ)π β π(WalksβπΊ)β¨βπ΄π΅πΆββ©)) |
139 | 138 | ex 413 |
. . . . . . . . . . . . . 14
β’ (π(WalksβπΊ)π β (((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π(WalksβπΊ)π β π(WalksβπΊ)β¨βπ΄π΅πΆββ©))) |
140 | 139 | pm2.43a 54 |
. . . . . . . . . . . . 13
β’ (π(WalksβπΊ)π β (((β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β π(WalksβπΊ)β¨βπ΄π΅πΆββ©)) |
141 | 140 | 3impib 1116 |
. . . . . . . . . . . 12
β’ ((π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β π(WalksβπΊ)β¨βπ΄π΅πΆββ©) |
142 | 141 | adantl 482 |
. . . . . . . . . . 11
β’ (((π΄ β π β§ π΅ β π β§ πΆ β π) β§ (π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β π(WalksβπΊ)β¨βπ΄π΅πΆββ©) |
143 | | simpr2 1195 |
. . . . . . . . . . 11
β’ (((π΄ β π β§ π΅ β π β§ πΆ β π) β§ (π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (β―βπ) = 2) |
144 | 142, 143 | jca 512 |
. . . . . . . . . 10
β’ (((π΄ β π β§ π΅ β π β§ πΆ β π) β§ (π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) β (π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2)) |
145 | 144 | ex 413 |
. . . . . . . . 9
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β ((π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
146 | 145 | exlimdv 1936 |
. . . . . . . 8
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (βπ(π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
147 | 146 | eximdv 1920 |
. . . . . . 7
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π) β (βπβπ(π(WalksβπΊ)π β§ (β―βπ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
148 | 76, 147 | syl5com 31 |
. . . . . 6
β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β ((π΄ β π β§ π΅ β π β§ πΆ β π) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
149 | 148 | 3expib 1122 |
. . . . 5
β’ (πΊ β UMGraph β (({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β ((π΄ β π β§ π΅ β π β§ πΆ β π) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2)))) |
150 | 149 | com23 86 |
. . . 4
β’ (πΊ β UMGraph β ((π΄ β π β§ π΅ β π β§ πΆ β π) β (({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2)))) |
151 | 150 | imp 407 |
. . 3
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
152 | 75, 151 | impbid 211 |
. 2
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
153 | 8, 152 | bitrd 278 |
1
β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |