MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwwlks2on Structured version   Visualization version   GIF version

Theorem umgrwwlks2on 29200
Description: A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases 𝐴 = 𝐡 and/or 𝐡 = 𝐢 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypotheses
Ref Expression
s3wwlks2on.v 𝑉 = (Vtxβ€˜πΊ)
usgrwwlks2on.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
umgrwwlks2on ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ (𝐴(2 WWalksNOn 𝐺)𝐢) ↔ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))

Proof of Theorem umgrwwlks2on
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgrupgr 28352 . . . 4 (𝐺 ∈ UMGraph β†’ 𝐺 ∈ UPGraph)
21adantr 481 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ 𝐺 ∈ UPGraph)
3 simp1 1136 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ 𝐴 ∈ 𝑉)
43adantl 482 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ 𝐴 ∈ 𝑉)
5 simpr3 1196 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ 𝐢 ∈ 𝑉)
6 s3wwlks2on.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
76s3wwlks2on 29199 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ (𝐴(2 WWalksNOn 𝐺)𝐢) ↔ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
82, 4, 5, 7syl3anc 1371 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ (𝐴(2 WWalksNOn 𝐺)𝐢) ↔ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
9 eqid 2732 . . . . . . . 8 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
106, 9upgr2wlk 28914 . . . . . . 7 (𝐺 ∈ UPGraph β†’ ((𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2) ↔ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)}))))
111, 10syl 17 . . . . . 6 (𝐺 ∈ UMGraph β†’ ((𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2) ↔ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)}))))
1211adantr 481 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2) ↔ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)}))))
13 s3fv0 14838 . . . . . . . . . . . 12 (𝐴 ∈ 𝑉 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0) = 𝐴)
14133ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0) = 𝐴)
15 s3fv1 14839 . . . . . . . . . . . 12 (𝐡 ∈ 𝑉 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1) = 𝐡)
16153ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1) = 𝐡)
1714, 16preq12d 4744 . . . . . . . . . 10 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} = {𝐴, 𝐡})
1817eqeq2d 2743 . . . . . . . . 9 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ↔ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡}))
19 s3fv2 14840 . . . . . . . . . . . 12 (𝐢 ∈ 𝑉 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2) = 𝐢)
20193ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2) = 𝐢)
2116, 20preq12d 4744 . . . . . . . . . 10 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)} = {𝐡, 𝐢})
2221eqeq2d 2743 . . . . . . . . 9 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)} ↔ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))
2318, 22anbi12d 631 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ ((((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)}) ↔ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})))
2423adantl 482 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)}) ↔ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})))
25243anbi3d 1442 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)})) ↔ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))))
26 umgruhgr 28353 . . . . . . . . . . 11 (𝐺 ∈ UMGraph β†’ 𝐺 ∈ UHGraph)
279uhgrfun 28315 . . . . . . . . . . 11 (𝐺 ∈ UHGraph β†’ Fun (iEdgβ€˜πΊ))
28 fdmrn 6746 . . . . . . . . . . . 12 (Fun (iEdgβ€˜πΊ) ↔ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ))
29 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ)) β†’ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ))
30 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) β†’ 𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ))
31 c0ex 11204 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
3231prid1 4765 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ {0, 1}
33 fzo0to2pr 13713 . . . . . . . . . . . . . . . . . . . . 21 (0..^2) = {0, 1}
3432, 33eleqtrri 2832 . . . . . . . . . . . . . . . . . . . 20 0 ∈ (0..^2)
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) β†’ 0 ∈ (0..^2))
3630, 35ffvelcdmd 7084 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) β†’ (π‘“β€˜0) ∈ dom (iEdgβ€˜πΊ))
3736adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ)) β†’ (π‘“β€˜0) ∈ dom (iEdgβ€˜πΊ))
3829, 37ffvelcdmd 7084 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ)) β†’ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ))
39 1ex 11206 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
4039prid2 4766 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ {0, 1}
4140, 33eleqtrri 2832 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (0..^2)
4241a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) β†’ 1 ∈ (0..^2))
4330, 42ffvelcdmd 7084 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) β†’ (π‘“β€˜1) ∈ dom (iEdgβ€˜πΊ))
4443adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ)) β†’ (π‘“β€˜1) ∈ dom (iEdgβ€˜πΊ))
4529, 44ffvelcdmd 7084 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ)) β†’ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))
4638, 45jca 512 . . . . . . . . . . . . . . 15 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ (iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ)) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ)))
4746ex 413 . . . . . . . . . . . . . 14 (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) β†’ ((iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))))
48473ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ ((iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))))
4948com12 32 . . . . . . . . . . . 12 ((iEdgβ€˜πΊ):dom (iEdgβ€˜πΊ)⟢ran (iEdgβ€˜πΊ) β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))))
5028, 49sylbi 216 . . . . . . . . . . 11 (Fun (iEdgβ€˜πΊ) β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))))
5126, 27, 503syl 18 . . . . . . . . . 10 (𝐺 ∈ UMGraph β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))))
5251imp 407 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ)))
53 eqcom 2739 . . . . . . . . . . . . . . 15 (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ↔ {𝐴, 𝐡} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)))
5453biimpi 215 . . . . . . . . . . . . . 14 (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} β†’ {𝐴, 𝐡} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)))
5554adantr 481 . . . . . . . . . . . . 13 ((((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}) β†’ {𝐴, 𝐡} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)))
56553ad2ant3 1135 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ {𝐴, 𝐡} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)))
5756adantl 482 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ {𝐴, 𝐡} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)))
58 usgrwwlks2on.e . . . . . . . . . . . . 13 𝐸 = (Edgβ€˜πΊ)
59 edgval 28298 . . . . . . . . . . . . 13 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
6058, 59eqtri 2760 . . . . . . . . . . . 12 𝐸 = ran (iEdgβ€˜πΊ)
6160a1i 11 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ 𝐸 = ran (iEdgβ€˜πΊ))
6257, 61eleq12d 2827 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ ({𝐴, 𝐡} ∈ 𝐸 ↔ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ)))
63 eqcom 2739 . . . . . . . . . . . . . . 15 (((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢} ↔ {𝐡, 𝐢} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)))
6463biimpi 215 . . . . . . . . . . . . . 14 (((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢} β†’ {𝐡, 𝐢} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)))
6564adantl 482 . . . . . . . . . . . . 13 ((((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}) β†’ {𝐡, 𝐢} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)))
66653ad2ant3 1135 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ {𝐡, 𝐢} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)))
6766adantl 482 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ {𝐡, 𝐢} = ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)))
6867, 61eleq12d 2827 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ ({𝐡, 𝐢} ∈ 𝐸 ↔ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ)))
6962, 68anbi12d 631 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ (({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ↔ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) ∈ ran (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) ∈ ran (iEdgβ€˜πΊ))))
7052, 69mpbird 256 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢}))) β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
7170ex 413 . . . . . . 7 (𝐺 ∈ UMGraph β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
7271adantr 481 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {𝐴, 𝐡} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {𝐡, 𝐢})) β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
7325, 72sylbid 239 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((𝑓:(0..^2)⟢dom (iEdgβ€˜πΊ) ∧ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0...2)βŸΆπ‘‰ ∧ (((iEdgβ€˜πΊ)β€˜(π‘“β€˜0)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1)} ∧ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜1)) = {(βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1), (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2)})) β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
7412, 73sylbid 239 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2) β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
7574exlimdv 1936 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2) β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
7658umgr2wlk 29192 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))))
77 wlklenvp1 28864 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (β™―β€˜π‘) = ((β™―β€˜π‘“) + 1))
78 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘“) = 2 β†’ ((β™―β€˜π‘“) + 1) = (2 + 1))
79 2p1e3 12350 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
8078, 79eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘“) = 2 β†’ ((β™―β€˜π‘“) + 1) = 3)
8180adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ ((β™―β€˜π‘“) + 1) = 3)
8277, 81sylan9eq 2792 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (β™―β€˜π‘) = 3)
83 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = (π‘β€˜0) ↔ (π‘β€˜0) = 𝐴)
84 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐡 = (π‘β€˜1) ↔ (π‘β€˜1) = 𝐡)
85 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐢 = (π‘β€˜2) ↔ (π‘β€˜2) = 𝐢)
8683, 84, 853anbi123i 1155 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) ↔ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢))
8786biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢))
8887adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢))
8988adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢))
9082, 89jca 512 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ ((β™―β€˜π‘) = 3 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢)))
916wlkpwrd 28863 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walksβ€˜πΊ)𝑝 β†’ 𝑝 ∈ Word 𝑉)
9280eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘“) = 2 β†’ ((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ↔ (β™―β€˜π‘) = 3))
9392adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘“) = 2) β†’ ((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) ↔ (β™―β€˜π‘) = 3))
94 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = 3 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ 𝑝 ∈ Word 𝑉)
95 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((β™―β€˜π‘) = 3 β†’ (0..^(β™―β€˜π‘)) = (0..^3))
96 fzo0to3tp 13714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^3) = {0, 1, 2}
9795, 96eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((β™―β€˜π‘) = 3 β†’ (0..^(β™―β€˜π‘)) = {0, 1, 2})
9831tpid1 4771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 0 ∈ {0, 1, 2}
99 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(β™―β€˜π‘)) = {0, 1, 2} β†’ (0 ∈ (0..^(β™―β€˜π‘)) ↔ 0 ∈ {0, 1, 2}))
10098, 99mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(β™―β€˜π‘)) = {0, 1, 2} β†’ 0 ∈ (0..^(β™―β€˜π‘)))
101 wrdsymbcl 14473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 0 ∈ (0..^(β™―β€˜π‘))) β†’ (π‘β€˜0) ∈ 𝑉)
102100, 101sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(β™―β€˜π‘)) = {0, 1, 2}) β†’ (π‘β€˜0) ∈ 𝑉)
10339tpid2 4773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ {0, 1, 2}
104 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(β™―β€˜π‘)) = {0, 1, 2} β†’ (1 ∈ (0..^(β™―β€˜π‘)) ↔ 1 ∈ {0, 1, 2}))
105103, 104mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(β™―β€˜π‘)) = {0, 1, 2} β†’ 1 ∈ (0..^(β™―β€˜π‘)))
106 wrdsymbcl 14473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 1 ∈ (0..^(β™―β€˜π‘))) β†’ (π‘β€˜1) ∈ 𝑉)
107105, 106sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(β™―β€˜π‘)) = {0, 1, 2}) β†’ (π‘β€˜1) ∈ 𝑉)
108 2ex 12285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ V
109108tpid3 4776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ {0, 1, 2}
110 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(β™―β€˜π‘)) = {0, 1, 2} β†’ (2 ∈ (0..^(β™―β€˜π‘)) ↔ 2 ∈ {0, 1, 2}))
111109, 110mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(β™―β€˜π‘)) = {0, 1, 2} β†’ 2 ∈ (0..^(β™―β€˜π‘)))
112 wrdsymbcl 14473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 2 ∈ (0..^(β™―β€˜π‘))) β†’ (π‘β€˜2) ∈ 𝑉)
113111, 112sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(β™―β€˜π‘)) = {0, 1, 2}) β†’ (π‘β€˜2) ∈ 𝑉)
114102, 107, 1133jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑝 ∈ Word 𝑉 ∧ (0..^(β™―β€˜π‘)) = {0, 1, 2}) β†’ ((π‘β€˜0) ∈ 𝑉 ∧ (π‘β€˜1) ∈ 𝑉 ∧ (π‘β€˜2) ∈ 𝑉))
11597, 114sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = 3) β†’ ((π‘β€˜0) ∈ 𝑉 ∧ (π‘β€˜1) ∈ 𝑉 ∧ (π‘β€˜2) ∈ 𝑉))
1161153adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = 3 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ ((π‘β€˜0) ∈ 𝑉 ∧ (π‘β€˜1) ∈ 𝑉 ∧ (π‘β€˜2) ∈ 𝑉))
117 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = (π‘β€˜0) β†’ (𝐴 ∈ 𝑉 ↔ (π‘β€˜0) ∈ 𝑉))
1181173ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝐴 ∈ 𝑉 ↔ (π‘β€˜0) ∈ 𝑉))
119 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐡 = (π‘β€˜1) β†’ (𝐡 ∈ 𝑉 ↔ (π‘β€˜1) ∈ 𝑉))
1201193ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝐡 ∈ 𝑉 ↔ (π‘β€˜1) ∈ 𝑉))
121 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐢 = (π‘β€˜2) β†’ (𝐢 ∈ 𝑉 ↔ (π‘β€˜2) ∈ 𝑉))
1221213ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝐢 ∈ 𝑉 ↔ (π‘β€˜2) ∈ 𝑉))
123118, 120, 1223anbi123d 1436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) ↔ ((π‘β€˜0) ∈ 𝑉 ∧ (π‘β€˜1) ∈ 𝑉 ∧ (π‘β€˜2) ∈ 𝑉)))
1241233ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = 3 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) ↔ ((π‘β€˜0) ∈ 𝑉 ∧ (π‘β€˜1) ∈ 𝑉 ∧ (π‘β€˜2) ∈ 𝑉)))
125116, 124mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = 3 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉))
12694, 125jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = 3 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)))
1271263exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ Word 𝑉 β†’ ((β™―β€˜π‘) = 3 β†’ ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)))))
128127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘“) = 2) β†’ ((β™―β€˜π‘) = 3 β†’ ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)))))
12993, 128sylbid 239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘“) = 2) β†’ ((β™―β€˜π‘) = ((β™―β€˜π‘“) + 1) β†’ ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)))))
130129impancom 452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = ((β™―β€˜π‘“) + 1)) β†’ ((β™―β€˜π‘“) = 2 β†’ ((𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)))))
131130impd 411 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ Word 𝑉 ∧ (β™―β€˜π‘) = ((β™―β€˜π‘“) + 1)) β†’ (((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉))))
13291, 77, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉))))
133132imp 407 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)))
134 eqwrds3 14908 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (𝑝 = βŸ¨β€œπ΄π΅πΆβ€βŸ© ↔ ((β™―β€˜π‘) = 3 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢))))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑝 = βŸ¨β€œπ΄π΅πΆβ€βŸ© ↔ ((β™―β€˜π‘) = 3 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜1) = 𝐡 ∧ (π‘β€˜2) = 𝐢))))
13690, 135mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ 𝑝 = βŸ¨β€œπ΄π΅πΆβ€βŸ©)
137136breq2d 5159 . . . . . . . . . . . . . . . 16 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ↔ 𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©))
138137biimpd 228 . . . . . . . . . . . . . . 15 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©))
139138ex 413 . . . . . . . . . . . . . 14 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©)))
140139pm2.43a 54 . . . . . . . . . . . . 13 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (((β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ 𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©))
1411403impib 1116 . . . . . . . . . . . 12 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ 𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©)
142141adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ 𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©)
143 simpr2 1195 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (β™―β€˜π‘“) = 2)
144142, 143jca 512 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) ∧ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2)))) β†’ (𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2))
145144ex 413 . . . . . . . . 9 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
146145exlimdv 1936 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ (𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
147146eximdv 1920 . . . . . . 7 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 2 ∧ (𝐴 = (π‘β€˜0) ∧ 𝐡 = (π‘β€˜1) ∧ 𝐢 = (π‘β€˜2))) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
14876, 147syl5com 31 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
1491483expib 1122 . . . . 5 (𝐺 ∈ UMGraph β†’ (({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2))))
150149com23 86 . . . 4 (𝐺 ∈ UMGraph β†’ ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉) β†’ (({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2))))
151150imp 407 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2)))
15275, 151impbid 211 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ© ∧ (β™―β€˜π‘“) = 2) ↔ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
1538, 152bitrd 278 1 ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ (𝐴(2 WWalksNOn 𝐺)𝐢) ↔ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cpr 4629  {ctp 4631   class class class wbr 5147  dom cdm 5675  ran crn 5676  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  2c2 12263  3c3 12264  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460  βŸ¨β€œcs3 14789  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  UHGraphcuhgr 28305  UPGraphcupgr 28329  UMGraphcumgr 28330  Walkscwlks 28842   WWalksNOn cwwlksnon 29070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-umgr 28332  df-wlks 28845  df-wwlks 29073  df-wwlksn 29074  df-wwlksnon 29075
This theorem is referenced by:  wwlks2onsym  29201  usgr2wspthons3  29207  frgr2wwlkeu  29569
  Copyright terms: Public domain W3C validator