MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwwlks2on Structured version   Visualization version   GIF version

Theorem umgrwwlks2on 29939
Description: A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases 𝐴 = 𝐵 and/or 𝐵 = 𝐶 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypotheses
Ref Expression
s3wwlks2on.v 𝑉 = (Vtx‘𝐺)
usgrwwlks2on.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrwwlks2on ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem umgrwwlks2on
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgrupgr 29082 . . . 4 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
21adantr 480 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 481 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr3 1197 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
6 s3wwlks2on.v . . . 4 𝑉 = (Vtx‘𝐺)
76s3wwlks2on 29938 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
82, 4, 5, 7syl3anc 1373 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
9 eqid 2735 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
106, 9upgr2wlk 29648 . . . . . . 7 (𝐺 ∈ UPGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
111, 10syl 17 . . . . . 6 (𝐺 ∈ UMGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
1211adantr 480 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
13 s3fv0 14910 . . . . . . . . . . . 12 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
14133ad2ant1 1133 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
15 s3fv1 14911 . . . . . . . . . . . 12 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
16153ad2ant2 1134 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
1714, 16preq12d 4717 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} = {𝐴, 𝐵})
1817eqeq2d 2746 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ↔ ((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵}))
19 s3fv2 14912 . . . . . . . . . . . 12 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
20193ad2ant3 1135 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
2116, 20preq12d 4717 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} = {𝐵, 𝐶})
2221eqeq2d 2746 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} ↔ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))
2318, 22anbi12d 632 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
2423adantl 481 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
25243anbi3d 1444 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))))
26 umgruhgr 29083 . . . . . . . . . . 11 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
279uhgrfun 29045 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
28 fdmrn 6737 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
29 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
30 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 𝑓:(0..^2)⟶dom (iEdg‘𝐺))
31 c0ex 11229 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
3231prid1 4738 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ {0, 1}
33 fzo0to2pr 13766 . . . . . . . . . . . . . . . . . . . . 21 (0..^2) = {0, 1}
3432, 33eleqtrri 2833 . . . . . . . . . . . . . . . . . . . 20 0 ∈ (0..^2)
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 0 ∈ (0..^2))
3630, 35ffvelcdmd 7075 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3829, 37ffvelcdmd 7075 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺))
39 1ex 11231 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
4039prid2 4739 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ {0, 1}
4140, 33eleqtrri 2833 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (0..^2)
4241a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 1 ∈ (0..^2))
4330, 42ffvelcdmd 7075 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4443adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4529, 44ffvelcdmd 7075 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))
4638, 45jca 511 . . . . . . . . . . . . . . 15 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
4746ex 412 . . . . . . . . . . . . . 14 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
48473ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
4948com12 32 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5028, 49sylbi 217 . . . . . . . . . . 11 (Fun (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5126, 27, 503syl 18 . . . . . . . . . 10 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5251imp 406 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
53 eqcom 2742 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5453biimpi 216 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5554adantr 480 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
56553ad2ant3 1135 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5756adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
58 usgrwwlks2on.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
59 edgval 29028 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
6058, 59eqtri 2758 . . . . . . . . . . . 12 𝐸 = ran (iEdg‘𝐺)
6160a1i 11 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → 𝐸 = ran (iEdg‘𝐺))
6257, 61eleq12d 2828 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺)))
63 eqcom 2742 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} ↔ {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6463biimpi 216 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6564adantl 481 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
66653ad2ant3 1135 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6766adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6867, 61eleq12d 2828 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐵, 𝐶} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
6962, 68anbi12d 632 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
7052, 69mpbird 257 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7170ex 412 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7271adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7325, 72sylbid 240 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7412, 73sylbid 240 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7574exlimdv 1933 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7658umgr2wlk 29931 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
77 wlklenvp1 29598 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
78 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
79 2p1e3 12382 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
8078, 79eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = 3)
8180adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((♯‘𝑓) + 1) = 3)
8277, 81sylan9eq 2790 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (♯‘𝑝) = 3)
83 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = (𝑝‘0) ↔ (𝑝‘0) = 𝐴)
84 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 = (𝑝‘1) ↔ (𝑝‘1) = 𝐵)
85 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 = (𝑝‘2) ↔ (𝑝‘2) = 𝐶)
8683, 84, 853anbi123i 1155 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8786biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8887adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8988adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
9082, 89jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶)))
916wlkpwrd 29597 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9280eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) = 2 → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
94 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
95 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑝) = 3 → (0..^(♯‘𝑝)) = (0..^3))
96 fzo0to3tp 13768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^3) = {0, 1, 2}
9795, 96eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((♯‘𝑝) = 3 → (0..^(♯‘𝑝)) = {0, 1, 2})
9831tpid1 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 0 ∈ {0, 1, 2}
99 eleq2 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (0 ∈ (0..^(♯‘𝑝)) ↔ 0 ∈ {0, 1, 2}))
10098, 99mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 0 ∈ (0..^(♯‘𝑝)))
101 wrdsymbcl 14545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑝))) → (𝑝‘0) ∈ 𝑉)
102100, 101sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘0) ∈ 𝑉)
10339tpid2 4746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ {0, 1, 2}
104 eleq2 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (1 ∈ (0..^(♯‘𝑝)) ↔ 1 ∈ {0, 1, 2}))
105103, 104mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 1 ∈ (0..^(♯‘𝑝)))
106 wrdsymbcl 14545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑝))) → (𝑝‘1) ∈ 𝑉)
107105, 106sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘1) ∈ 𝑉)
108 2ex 12317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ V
109108tpid3 4749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ {0, 1, 2}
110 eleq2 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (2 ∈ (0..^(♯‘𝑝)) ↔ 2 ∈ {0, 1, 2}))
111109, 110mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 2 ∈ (0..^(♯‘𝑝)))
112 wrdsymbcl 14545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑝))) → (𝑝‘2) ∈ 𝑉)
113111, 112sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘2) ∈ 𝑉)
114102, 107, 1133jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
11597, 114sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
1161153adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
117 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = (𝑝‘0) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
1181173ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
119 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 = (𝑝‘1) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
1201193ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
121 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐶 = (𝑝‘2) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
1221213ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
123118, 120, 1223anbi123d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
1241233ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
125116, 124mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝐴𝑉𝐵𝑉𝐶𝑉))
12694, 125jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
1271263exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ Word 𝑉 → ((♯‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
12993, 128sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
130129impancom 451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = ((♯‘𝑓) + 1)) → ((♯‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
131130impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = ((♯‘𝑓) + 1)) → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
13291, 77, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
133132imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
134 eqwrds3 14980 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
13690, 135mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑝 = ⟨“𝐴𝐵𝐶”⟩)
137136breq2d 5131 . . . . . . . . . . . . . . . 16 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
138137biimpd 229 . . . . . . . . . . . . . . 15 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
139138ex 412 . . . . . . . . . . . . . 14 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)))
140139pm2.43a 54 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
1411403impib 1116 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
143 simpr2 1196 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (♯‘𝑓) = 2)
144142, 143jca 511 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))
145144ex 412 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
146145exlimdv 1933 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
147146eximdv 1917 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
14876, 147syl5com 31 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
1491483expib 1122 . . . . 5 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))))
150149com23 86 . . . 4 (𝐺 ∈ UMGraph → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))))
151150imp 406 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
15275, 151impbid 212 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
1538, 152bitrd 279 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cpr 4603  {ctp 4605   class class class wbr 5119  dom cdm 5654  ran crn 5655  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  2c2 12295  3c3 12296  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531  ⟨“cs3 14861  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  UHGraphcuhgr 29035  UPGraphcupgr 29059  UMGraphcumgr 29060  Walkscwlks 29576   WWalksNOn cwwlksnon 29809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-edg 29027  df-uhgr 29037  df-upgr 29061  df-umgr 29062  df-wlks 29579  df-wwlks 29812  df-wwlksn 29813  df-wwlksnon 29814
This theorem is referenced by:  wwlks2onsym  29940  usgr2wspthons3  29946  frgr2wwlkeu  30308
  Copyright terms: Public domain W3C validator