MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwwlks2on Structured version   Visualization version   GIF version

Theorem umgrwwlks2on 28223
Description: A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases 𝐴 = 𝐵 and/or 𝐵 = 𝐶 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypotheses
Ref Expression
s3wwlks2on.v 𝑉 = (Vtx‘𝐺)
usgrwwlks2on.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrwwlks2on ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem umgrwwlks2on
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgrupgr 27376 . . . 4 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
21adantr 480 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simp1 1134 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 481 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr3 1194 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
6 s3wwlks2on.v . . . 4 𝑉 = (Vtx‘𝐺)
76s3wwlks2on 28222 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
82, 4, 5, 7syl3anc 1369 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
9 eqid 2738 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
106, 9upgr2wlk 27938 . . . . . . 7 (𝐺 ∈ UPGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
111, 10syl 17 . . . . . 6 (𝐺 ∈ UMGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
1211adantr 480 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
13 s3fv0 14532 . . . . . . . . . . . 12 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
14133ad2ant1 1131 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
15 s3fv1 14533 . . . . . . . . . . . 12 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
16153ad2ant2 1132 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
1714, 16preq12d 4674 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} = {𝐴, 𝐵})
1817eqeq2d 2749 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ↔ ((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵}))
19 s3fv2 14534 . . . . . . . . . . . 12 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
20193ad2ant3 1133 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
2116, 20preq12d 4674 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} = {𝐵, 𝐶})
2221eqeq2d 2749 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} ↔ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))
2318, 22anbi12d 630 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
2423adantl 481 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
25243anbi3d 1440 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))))
26 umgruhgr 27377 . . . . . . . . . . 11 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
279uhgrfun 27339 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
28 fdmrn 6616 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
29 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
30 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 𝑓:(0..^2)⟶dom (iEdg‘𝐺))
31 c0ex 10900 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
3231prid1 4695 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ {0, 1}
33 fzo0to2pr 13400 . . . . . . . . . . . . . . . . . . . . 21 (0..^2) = {0, 1}
3432, 33eleqtrri 2838 . . . . . . . . . . . . . . . . . . . 20 0 ∈ (0..^2)
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 0 ∈ (0..^2))
3630, 35ffvelrnd 6944 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3829, 37ffvelrnd 6944 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺))
39 1ex 10902 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
4039prid2 4696 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ {0, 1}
4140, 33eleqtrri 2838 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (0..^2)
4241a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 1 ∈ (0..^2))
4330, 42ffvelrnd 6944 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4443adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4529, 44ffvelrnd 6944 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))
4638, 45jca 511 . . . . . . . . . . . . . . 15 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
4746ex 412 . . . . . . . . . . . . . 14 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
48473ad2ant1 1131 . . . . . . . . . . . . 13 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
4948com12 32 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5028, 49sylbi 216 . . . . . . . . . . 11 (Fun (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5126, 27, 503syl 18 . . . . . . . . . 10 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5251imp 406 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
53 eqcom 2745 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5453biimpi 215 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5554adantr 480 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
56553ad2ant3 1133 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5756adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
58 usgrwwlks2on.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
59 edgval 27322 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
6058, 59eqtri 2766 . . . . . . . . . . . 12 𝐸 = ran (iEdg‘𝐺)
6160a1i 11 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → 𝐸 = ran (iEdg‘𝐺))
6257, 61eleq12d 2833 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺)))
63 eqcom 2745 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} ↔ {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6463biimpi 215 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6564adantl 481 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
66653ad2ant3 1133 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6766adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6867, 61eleq12d 2833 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐵, 𝐶} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
6962, 68anbi12d 630 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
7052, 69mpbird 256 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7170ex 412 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7271adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7325, 72sylbid 239 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7412, 73sylbid 239 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7574exlimdv 1937 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7658umgr2wlk 28215 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
77 wlklenvp1 27888 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
78 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
79 2p1e3 12045 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
8078, 79eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = 3)
8180adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((♯‘𝑓) + 1) = 3)
8277, 81sylan9eq 2799 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (♯‘𝑝) = 3)
83 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = (𝑝‘0) ↔ (𝑝‘0) = 𝐴)
84 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 = (𝑝‘1) ↔ (𝑝‘1) = 𝐵)
85 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 = (𝑝‘2) ↔ (𝑝‘2) = 𝐶)
8683, 84, 853anbi123i 1153 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8786biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8887adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8988adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
9082, 89jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶)))
916wlkpwrd 27887 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9280eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) = 2 → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = ((♯‘𝑓) + 1) ↔ (♯‘𝑝) = 3))
94 simp1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
95 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑝) = 3 → (0..^(♯‘𝑝)) = (0..^3))
96 fzo0to3tp 13401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^3) = {0, 1, 2}
9795, 96eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((♯‘𝑝) = 3 → (0..^(♯‘𝑝)) = {0, 1, 2})
9831tpid1 4701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 0 ∈ {0, 1, 2}
99 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (0 ∈ (0..^(♯‘𝑝)) ↔ 0 ∈ {0, 1, 2}))
10098, 99mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 0 ∈ (0..^(♯‘𝑝)))
101 wrdsymbcl 14158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑝))) → (𝑝‘0) ∈ 𝑉)
102100, 101sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘0) ∈ 𝑉)
10339tpid2 4703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ {0, 1, 2}
104 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (1 ∈ (0..^(♯‘𝑝)) ↔ 1 ∈ {0, 1, 2}))
105103, 104mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 1 ∈ (0..^(♯‘𝑝)))
106 wrdsymbcl 14158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑝))) → (𝑝‘1) ∈ 𝑉)
107105, 106sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘1) ∈ 𝑉)
108 2ex 11980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ V
109108tpid3 4706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ {0, 1, 2}
110 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(♯‘𝑝)) = {0, 1, 2} → (2 ∈ (0..^(♯‘𝑝)) ↔ 2 ∈ {0, 1, 2}))
111109, 110mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(♯‘𝑝)) = {0, 1, 2} → 2 ∈ (0..^(♯‘𝑝)))
112 wrdsymbcl 14158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑝))) → (𝑝‘2) ∈ 𝑉)
113111, 112sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → (𝑝‘2) ∈ 𝑉)
114102, 107, 1133jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑝 ∈ Word 𝑉 ∧ (0..^(♯‘𝑝)) = {0, 1, 2}) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
11597, 114sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
1161153adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
117 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = (𝑝‘0) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
1181173ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
119 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 = (𝑝‘1) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
1201193ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
121 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐶 = (𝑝‘2) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
1221213ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
123118, 120, 1223anbi123d 1434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
1241233ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
125116, 124mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝐴𝑉𝐵𝑉𝐶𝑉))
12694, 125jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
1271263exp 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ Word 𝑉 → ((♯‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
12993, 128sylbid 239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑓) = 2) → ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
130129impancom 451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = ((♯‘𝑓) + 1)) → ((♯‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
131130impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = ((♯‘𝑓) + 1)) → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
13291, 77, 131syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
133132imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
134 eqwrds3 14604 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
13690, 135mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑝 = ⟨“𝐴𝐵𝐶”⟩)
137136breq2d 5082 . . . . . . . . . . . . . . . 16 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
138137biimpd 228 . . . . . . . . . . . . . . 15 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
139138ex 412 . . . . . . . . . . . . . 14 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)))
140139pm2.43a 54 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 → (((♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
1411403impib 1114 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
143 simpr2 1193 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (♯‘𝑓) = 2)
144142, 143jca 511 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))
145144ex 412 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
146145exlimdv 1937 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
147146eximdv 1921 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
14876, 147syl5com 31 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
1491483expib 1120 . . . . 5 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))))
150149com23 86 . . . 4 (𝐺 ∈ UMGraph → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2))))
151150imp 406 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
15275, 151impbid 211 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
1538, 152bitrd 278 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cpr 4560  {ctp 4562   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  2c2 11958  3c3 11959  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs3 14483  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329  UPGraphcupgr 27353  UMGraphcumgr 27354  Walkscwlks 27866   WWalksNOn cwwlksnon 28093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-wlks 27869  df-wwlks 28096  df-wwlksn 28097  df-wwlksnon 28098
This theorem is referenced by:  wwlks2onsym  28224  usgr2wspthons3  28230  frgr2wwlkeu  28592
  Copyright terms: Public domain W3C validator