Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fco3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of funcofd 6617 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fco3OLD.1 | ⊢ (𝜑 → Fun 𝐹) |
fco3OLD.2 | ⊢ (𝜑 → Fun 𝐺) |
Ref | Expression |
---|---|
fco3OLD | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco3OLD.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
2 | fco3OLD.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐺) | |
3 | funco 6458 | . . . . 5 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2anc 583 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
5 | fdmrn 6616 | . . . 4 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) |
7 | dmco 6147 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
8 | 7 | feq2i 6576 | . . 3 ⊢ ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
9 | 6, 8 | sylib 217 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
10 | rncoss 5870 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹) |
12 | 9, 11 | fssd 6602 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ∘ ccom 5584 Fun wfun 6412 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |