MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco3OLD Structured version   Visualization version   GIF version

Theorem fco3OLD 6703
Description: Obsolete version of funcofd 6702 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fco3OLD.1 (πœ‘ β†’ Fun 𝐹)
fco3OLD.2 (πœ‘ β†’ Fun 𝐺)
Assertion
Ref Expression
fco3OLD (πœ‘ β†’ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran 𝐹)

Proof of Theorem fco3OLD
StepHypRef Expression
1 fco3OLD.1 . . . . 5 (πœ‘ β†’ Fun 𝐹)
2 fco3OLD.2 . . . . 5 (πœ‘ β†’ Fun 𝐺)
3 funco 6542 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) β†’ Fun (𝐹 ∘ 𝐺))
41, 2, 3syl2anc 585 . . . 4 (πœ‘ β†’ Fun (𝐹 ∘ 𝐺))
5 fdmrn 6701 . . . 4 (Fun (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟢ran (𝐹 ∘ 𝐺))
64, 5sylib 217 . . 3 (πœ‘ β†’ (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟢ran (𝐹 ∘ 𝐺))
7 dmco 6207 . . . 4 dom (𝐹 ∘ 𝐺) = (◑𝐺 β€œ dom 𝐹)
87feq2i 6661 . . 3 ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟢ran (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran (𝐹 ∘ 𝐺))
96, 8sylib 217 . 2 (πœ‘ β†’ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran (𝐹 ∘ 𝐺))
10 rncoss 5928 . . 3 ran (𝐹 ∘ 𝐺) βŠ† ran 𝐹
1110a1i 11 . 2 (πœ‘ β†’ ran (𝐹 ∘ 𝐺) βŠ† ran 𝐹)
129, 11fssd 6687 1 (πœ‘ β†’ (𝐹 ∘ 𝐺):(◑𝐺 β€œ dom 𝐹)⟢ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   βŠ† wss 3911  β—‘ccnv 5633  dom cdm 5634  ran crn 5635   β€œ cima 5637   ∘ ccom 5638  Fun wfun 6491  βŸΆwf 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-fun 6499  df-fn 6500  df-f 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator