![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of funcofd 6702 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fco3OLD.1 | β’ (π β Fun πΉ) |
fco3OLD.2 | β’ (π β Fun πΊ) |
Ref | Expression |
---|---|
fco3OLD | β’ (π β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco3OLD.1 | . . . . 5 β’ (π β Fun πΉ) | |
2 | fco3OLD.2 | . . . . 5 β’ (π β Fun πΊ) | |
3 | funco 6542 | . . . . 5 β’ ((Fun πΉ β§ Fun πΊ) β Fun (πΉ β πΊ)) | |
4 | 1, 2, 3 | syl2anc 585 | . . . 4 β’ (π β Fun (πΉ β πΊ)) |
5 | fdmrn 6701 | . . . 4 β’ (Fun (πΉ β πΊ) β (πΉ β πΊ):dom (πΉ β πΊ)βΆran (πΉ β πΊ)) | |
6 | 4, 5 | sylib 217 | . . 3 β’ (π β (πΉ β πΊ):dom (πΉ β πΊ)βΆran (πΉ β πΊ)) |
7 | dmco 6207 | . . . 4 β’ dom (πΉ β πΊ) = (β‘πΊ β dom πΉ) | |
8 | 7 | feq2i 6661 | . . 3 β’ ((πΉ β πΊ):dom (πΉ β πΊ)βΆran (πΉ β πΊ) β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran (πΉ β πΊ)) |
9 | 6, 8 | sylib 217 | . 2 β’ (π β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran (πΉ β πΊ)) |
10 | rncoss 5928 | . . 3 β’ ran (πΉ β πΊ) β ran πΉ | |
11 | 10 | a1i 11 | . 2 β’ (π β ran (πΉ β πΊ) β ran πΉ) |
12 | 9, 11 | fssd 6687 | 1 β’ (π β (πΉ β πΊ):(β‘πΊ β dom πΉ)βΆran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wss 3911 β‘ccnv 5633 dom cdm 5634 ran crn 5635 β cima 5637 β ccom 5638 Fun wfun 6491 βΆwf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |