MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco3OLD Structured version   Visualization version   GIF version

Theorem fco3OLD 6752
Description: Obsolete version of funcofd 6751 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fco3OLD.1 (𝜑 → Fun 𝐹)
fco3OLD.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
fco3OLD (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem fco3OLD
StepHypRef Expression
1 fco3OLD.1 . . . . 5 (𝜑 → Fun 𝐹)
2 fco3OLD.2 . . . . 5 (𝜑 → Fun 𝐺)
3 funco 6589 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2anc 582 . . . 4 (𝜑 → Fun (𝐹𝐺))
5 fdmrn 6750 . . . 4 (Fun (𝐹𝐺) ↔ (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
64, 5sylib 217 . . 3 (𝜑 → (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
7 dmco 6256 . . . 4 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
87feq2i 6710 . . 3 ((𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺) ↔ (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
96, 8sylib 217 . 2 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
10 rncoss 5970 . . 3 ran (𝐹𝐺) ⊆ ran 𝐹
1110a1i 11 . 2 (𝜑 → ran (𝐹𝐺) ⊆ ran 𝐹)
129, 11fssd 6735 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3947  ccnv 5672  dom cdm 5673  ran crn 5674  cima 5676  ccom 5677  Fun wfun 6538  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator