![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of funcofd 6751 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fco3OLD.1 | ⊢ (𝜑 → Fun 𝐹) |
fco3OLD.2 | ⊢ (𝜑 → Fun 𝐺) |
Ref | Expression |
---|---|
fco3OLD | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco3OLD.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
2 | fco3OLD.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐺) | |
3 | funco 6589 | . . . . 5 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2anc 582 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
5 | fdmrn 6750 | . . . 4 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) |
7 | dmco 6256 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
8 | 7 | feq2i 6710 | . . 3 ⊢ ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
9 | 6, 8 | sylib 217 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
10 | rncoss 5970 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹) |
12 | 9, 11 | fssd 6735 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 ◡ccnv 5672 dom cdm 5673 ran crn 5674 “ cima 5676 ∘ ccom 5677 Fun wfun 6538 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-fun 6546 df-fn 6547 df-f 6548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |