MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco3OLD Structured version   Visualization version   GIF version

Theorem fco3OLD 6781
Description: Obsolete version of funcofd 6780 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fco3OLD.1 (𝜑 → Fun 𝐹)
fco3OLD.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
fco3OLD (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem fco3OLD
StepHypRef Expression
1 fco3OLD.1 . . . . 5 (𝜑 → Fun 𝐹)
2 fco3OLD.2 . . . . 5 (𝜑 → Fun 𝐺)
3 funco 6618 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2anc 583 . . . 4 (𝜑 → Fun (𝐹𝐺))
5 fdmrn 6779 . . . 4 (Fun (𝐹𝐺) ↔ (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
64, 5sylib 218 . . 3 (𝜑 → (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
7 dmco 6285 . . . 4 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
87feq2i 6739 . . 3 ((𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺) ↔ (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
96, 8sylib 218 . 2 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
10 rncoss 5998 . . 3 ran (𝐹𝐺) ⊆ ran 𝐹
1110a1i 11 . 2 (𝜑 → ran (𝐹𝐺) ⊆ ran 𝐹)
129, 11fssd 6764 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704  Fun wfun 6567  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator