MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco3OLD Structured version   Visualization version   GIF version

Theorem fco3OLD 6618
Description: Obsolete version of funcofd 6617 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fco3OLD.1 (𝜑 → Fun 𝐹)
fco3OLD.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
fco3OLD (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem fco3OLD
StepHypRef Expression
1 fco3OLD.1 . . . . 5 (𝜑 → Fun 𝐹)
2 fco3OLD.2 . . . . 5 (𝜑 → Fun 𝐺)
3 funco 6458 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2anc 583 . . . 4 (𝜑 → Fun (𝐹𝐺))
5 fdmrn 6616 . . . 4 (Fun (𝐹𝐺) ↔ (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
64, 5sylib 217 . . 3 (𝜑 → (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
7 dmco 6147 . . . 4 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
87feq2i 6576 . . 3 ((𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺) ↔ (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
96, 8sylib 217 . 2 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
10 rncoss 5870 . . 3 ran (𝐹𝐺) ⊆ ran 𝐹
1110a1i 11 . 2 (𝜑 → ran (𝐹𝐺) ⊆ ran 𝐹)
129, 11fssd 6602 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584  Fun wfun 6412  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator