![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of funcofd 6780 as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fco3OLD.1 | ⊢ (𝜑 → Fun 𝐹) |
fco3OLD.2 | ⊢ (𝜑 → Fun 𝐺) |
Ref | Expression |
---|---|
fco3OLD | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco3OLD.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
2 | fco3OLD.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐺) | |
3 | funco 6618 | . . . . 5 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2anc 583 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
5 | fdmrn 6779 | . . . 4 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) | |
6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) |
7 | dmco 6285 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
8 | 7 | feq2i 6739 | . . 3 ⊢ ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
9 | 6, 8 | sylib 218 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
10 | rncoss 5998 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹) |
12 | 9, 11 | fssd 6764 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ∘ ccom 5704 Fun wfun 6567 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |