| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | limccl 25910 | . . 3
⊢ (𝐺 limℂ 𝐵) ⊆
ℂ | 
| 2 |  | limccog.3 | . . 3
⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐵)) | 
| 3 | 1, 2 | sselid 3981 | . 2
⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| 4 |  | limcrcl 25909 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝐺 limℂ 𝐵) → (𝐺:dom 𝐺⟶ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) | 
| 5 | 2, 4 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐺:dom 𝐺⟶ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) | 
| 6 | 5 | simp1d 1143 | . . . . . . . . . 10
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℂ) | 
| 7 | 5 | simp2d 1144 | . . . . . . . . . 10
⊢ (𝜑 → dom 𝐺 ⊆ ℂ) | 
| 8 | 5 | simp3d 1145 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| 9 |  | eqid 2737 | . . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 10 | 6, 7, 8, 9 | ellimc2 25912 | . . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ (𝐺 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈
(TopOpen‘ℂfld)(𝐶 ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))))) | 
| 11 | 2, 10 | mpbid 232 | . . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑢 ∈
(TopOpen‘ℂfld)(𝐶 ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))) | 
| 12 | 11 | simprd 495 | . . . . . . 7
⊢ (𝜑 → ∀𝑢 ∈
(TopOpen‘ℂfld)(𝐶 ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))) | 
| 13 | 12 | r19.21bi 3251 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) → (𝐶 ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))) | 
| 14 | 13 | imp 406 | . . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) | 
| 15 |  | simp1ll 1237 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝜑) | 
| 16 |  | simp2 1138 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝑣 ∈
(TopOpen‘ℂfld)) | 
| 17 |  | simp3l 1202 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝐵 ∈ 𝑣) | 
| 18 |  | limccog.2 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐴)) | 
| 19 |  | limcrcl 25909 | . . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ (𝐹 limℂ 𝐴) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ)) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ)) | 
| 21 | 20 | simp1d 1143 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) | 
| 22 | 20 | simp2d 1144 | . . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 ⊆ ℂ) | 
| 23 | 20 | simp3d 1145 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 24 | 21, 22, 23, 9 | ellimc2 25912 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 ∈ (𝐹 limℂ 𝐴) ↔ (𝐵 ∈ ℂ ∧ ∀𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))))) | 
| 25 | 18, 24 | mpbid 232 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∈ ℂ ∧ ∀𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))) | 
| 26 | 25 | simprd 495 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))) | 
| 27 | 26 | r19.21bi 3251 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈
(TopOpen‘ℂfld)) → (𝐵 ∈ 𝑣 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))) | 
| 28 | 27 | imp 406 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈
(TopOpen‘ℂfld)) ∧ 𝐵 ∈ 𝑣) → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)) | 
| 29 | 15, 16, 17, 28 | syl21anc 838 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)) | 
| 30 |  | imaco 6271 | . . . . . . . . . . 11
⊢ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) = (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) | 
| 31 | 15 | ad2antrr 726 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → 𝜑) | 
| 32 |  | simpl3r 1230 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) | 
| 33 | 32 | adantr 480 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) | 
| 34 |  | simpr 484 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) | 
| 35 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) | 
| 36 |  | imassrn 6089 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ ran 𝐹 | 
| 37 |  | limccog.1 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵})) | 
| 38 | 36, 37 | sstrid 3995 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (dom 𝐺 ∖ {𝐵})) | 
| 39 | 38 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (dom 𝐺 ∖ {𝐵})) | 
| 40 | 35, 39 | ssind 4241 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) | 
| 41 |  | imass2 6120 | . . . . . . . . . . . . . . 15
⊢ ((𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})))) | 
| 42 | 40, 41 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})))) | 
| 43 | 42 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})))) | 
| 44 |  | simplr 769 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) | 
| 45 | 43, 44 | sstrd 3994 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ 𝑢) | 
| 46 | 31, 33, 34, 45 | syl21anc 838 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ 𝑢) | 
| 47 | 30, 46 | eqsstrid 4022 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢) | 
| 48 | 47 | ex 412 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) → ((𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣 → ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)) | 
| 49 | 48 | anim2d 612 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈
(TopOpen‘ℂfld)) → ((𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))) | 
| 50 | 49 | reximdva 3168 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → (∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))) | 
| 51 | 29, 50 | mpd 15 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ (𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)) | 
| 52 | 51 | rexlimdv3a 3159 | . . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) → (∃𝑣 ∈
(TopOpen‘ℂfld)(𝐵 ∈ 𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))) | 
| 53 | 14, 52 | mpd 15 | . . . 4
⊢ (((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) ∧ 𝐶 ∈ 𝑢) → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)) | 
| 54 | 53 | ex 412 | . . 3
⊢ ((𝜑 ∧ 𝑢 ∈
(TopOpen‘ℂfld)) → (𝐶 ∈ 𝑢 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))) | 
| 55 | 54 | ralrimiva 3146 | . 2
⊢ (𝜑 → ∀𝑢 ∈
(TopOpen‘ℂfld)(𝐶 ∈ 𝑢 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))) | 
| 56 | 21 | ffund 6740 | . . . . . 6
⊢ (𝜑 → Fun 𝐹) | 
| 57 |  | fdmrn 6767 | . . . . . 6
⊢ (Fun
𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | 
| 58 | 56, 57 | sylib 218 | . . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶ran 𝐹) | 
| 59 | 37 | difss2d 4139 | . . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ dom 𝐺) | 
| 60 | 58, 59 | fssd 6753 | . . . 4
⊢ (𝜑 → 𝐹:dom 𝐹⟶dom 𝐺) | 
| 61 |  | fco 6760 | . . . 4
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝐹:dom 𝐹⟶dom 𝐺) → (𝐺 ∘ 𝐹):dom 𝐹⟶ℂ) | 
| 62 | 6, 60, 61 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝐺 ∘ 𝐹):dom 𝐹⟶ℂ) | 
| 63 | 62, 22, 23, 9 | ellimc2 25912 | . 2
⊢ (𝜑 → (𝐶 ∈ ((𝐺 ∘ 𝐹) limℂ 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈
(TopOpen‘ℂfld)(𝐶 ∈ 𝑢 → ∃𝑤 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑤 ∧ ((𝐺 ∘ 𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))))) | 
| 64 | 3, 55, 63 | mpbir2and 713 | 1
⊢ (𝜑 → 𝐶 ∈ ((𝐺 ∘ 𝐹) limℂ 𝐴)) |