Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limccog Structured version   Visualization version   GIF version

Theorem limccog 44635
Description: Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐡 and the limit of 𝐺 at 𝐡 is 𝐢, then the limit of 𝐺 ∘ 𝐹 at 𝐴 is 𝐢. With respect to limcco 25634 and limccnp 25632, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limccog.1 (πœ‘ β†’ ran 𝐹 βŠ† (dom 𝐺 βˆ– {𝐡}))
limccog.2 (πœ‘ β†’ 𝐡 ∈ (𝐹 limβ„‚ 𝐴))
limccog.3 (πœ‘ β†’ 𝐢 ∈ (𝐺 limβ„‚ 𝐡))
Assertion
Ref Expression
limccog (πœ‘ β†’ 𝐢 ∈ ((𝐺 ∘ 𝐹) limβ„‚ 𝐴))

Proof of Theorem limccog
Dummy variables 𝑒 𝑣 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25616 . . 3 (𝐺 limβ„‚ 𝐡) βŠ† β„‚
2 limccog.3 . . 3 (πœ‘ β†’ 𝐢 ∈ (𝐺 limβ„‚ 𝐡))
31, 2sselid 3980 . 2 (πœ‘ β†’ 𝐢 ∈ β„‚)
4 limcrcl 25615 . . . . . . . . . . . 12 (𝐢 ∈ (𝐺 limβ„‚ 𝐡) β†’ (𝐺:dom πΊβŸΆβ„‚ ∧ dom 𝐺 βŠ† β„‚ ∧ 𝐡 ∈ β„‚))
52, 4syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (𝐺:dom πΊβŸΆβ„‚ ∧ dom 𝐺 βŠ† β„‚ ∧ 𝐡 ∈ β„‚))
65simp1d 1142 . . . . . . . . . 10 (πœ‘ β†’ 𝐺:dom πΊβŸΆβ„‚)
75simp2d 1143 . . . . . . . . . 10 (πœ‘ β†’ dom 𝐺 βŠ† β„‚)
85simp3d 1144 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ β„‚)
9 eqid 2732 . . . . . . . . . 10 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
106, 7, 8, 9ellimc2 25618 . . . . . . . . 9 (πœ‘ β†’ (𝐢 ∈ (𝐺 limβ„‚ 𝐡) ↔ (𝐢 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)))))
112, 10mpbid 231 . . . . . . . 8 (πœ‘ β†’ (𝐢 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒))))
1211simprd 496 . . . . . . 7 (πœ‘ β†’ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)))
1312r19.21bi 3248 . . . . . 6 ((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) β†’ (𝐢 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)))
1413imp 407 . . . . 5 (((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒))
15 simp1ll 1236 . . . . . . . 8 ((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) β†’ πœ‘)
16 simp2 1137 . . . . . . . 8 ((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) β†’ 𝑣 ∈ (TopOpenβ€˜β„‚fld))
17 simp3l 1201 . . . . . . . 8 ((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) β†’ 𝐡 ∈ 𝑣)
18 limccog.2 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐡 ∈ (𝐹 limβ„‚ 𝐴))
19 limcrcl 25615 . . . . . . . . . . . . . . 15 (𝐡 ∈ (𝐹 limβ„‚ 𝐴) β†’ (𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚ ∧ 𝐴 ∈ β„‚))
2018, 19syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚ ∧ 𝐴 ∈ β„‚))
2120simp1d 1142 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐹:dom πΉβŸΆβ„‚)
2220simp2d 1143 . . . . . . . . . . . . 13 (πœ‘ β†’ dom 𝐹 βŠ† β„‚)
2320simp3d 1144 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐴 ∈ β„‚)
2421, 22, 23, 9ellimc2 25618 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐡 ∈ (𝐹 limβ„‚ 𝐴) ↔ (𝐡 ∈ β„‚ ∧ βˆ€π‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣)))))
2518, 24mpbid 231 . . . . . . . . . . 11 (πœ‘ β†’ (𝐡 ∈ β„‚ ∧ βˆ€π‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣))))
2625simprd 496 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣)))
2726r19.21bi 3248 . . . . . . . . 9 ((πœ‘ ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld)) β†’ (𝐡 ∈ 𝑣 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣)))
2827imp 407 . . . . . . . 8 (((πœ‘ ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐡 ∈ 𝑣) β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣))
2915, 16, 17, 28syl21anc 836 . . . . . . 7 ((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣))
30 imaco 6250 . . . . . . . . . . 11 ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) = (𝐺 β€œ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))))
3115ad2antrr 724 . . . . . . . . . . . 12 ((((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ πœ‘)
32 simpl3r 1229 . . . . . . . . . . . . 13 (((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) β†’ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)
3332adantr 481 . . . . . . . . . . . 12 ((((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)
34 simpr 485 . . . . . . . . . . . 12 ((((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣)
35 simpr 485 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣)
36 imassrn 6070 . . . . . . . . . . . . . . . . . 18 (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† ran 𝐹
37 limccog.1 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ ran 𝐹 βŠ† (dom 𝐺 βˆ– {𝐡}))
3836, 37sstrid 3993 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† (dom 𝐺 βˆ– {𝐡}))
3938adantr 481 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† (dom 𝐺 βˆ– {𝐡}))
4035, 39ssind 4232 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† (𝑣 ∩ (dom 𝐺 βˆ– {𝐡})))
41 imass2 6101 . . . . . . . . . . . . . . 15 ((𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† (𝑣 ∩ (dom 𝐺 βˆ– {𝐡})) β†’ (𝐺 β€œ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴})))) βŠ† (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))))
4240, 41syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐺 β€œ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴})))) βŠ† (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))))
4342adantlr 713 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐺 β€œ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴})))) βŠ† (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))))
44 simplr 767 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)
4543, 44sstrd 3992 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐺 β€œ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴})))) βŠ† 𝑒)
4631, 33, 34, 45syl21anc 836 . . . . . . . . . . 11 ((((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐺 β€œ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴})))) βŠ† 𝑒)
4730, 46eqsstrid 4030 . . . . . . . . . 10 ((((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)
4847ex 413 . . . . . . . . 9 (((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) β†’ ((𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣 β†’ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒))
4948anim2d 612 . . . . . . . 8 (((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) ∧ 𝑀 ∈ (TopOpenβ€˜β„‚fld)) β†’ ((𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ (𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)))
5049reximdva 3168 . . . . . . 7 ((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) β†’ (βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ (𝐹 β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑣) β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)))
5129, 50mpd 15 . . . . . 6 ((((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) ∧ 𝑣 ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒)) β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒))
5251rexlimdv3a 3159 . . . . 5 (((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) β†’ (βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐡 ∈ 𝑣 ∧ (𝐺 β€œ (𝑣 ∩ (dom 𝐺 βˆ– {𝐡}))) βŠ† 𝑒) β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)))
5314, 52mpd 15 . . . 4 (((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) ∧ 𝐢 ∈ 𝑒) β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒))
5453ex 413 . . 3 ((πœ‘ ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) β†’ (𝐢 ∈ 𝑒 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)))
5554ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑒 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)))
5621ffund 6721 . . . . . 6 (πœ‘ β†’ Fun 𝐹)
57 fdmrn 6749 . . . . . 6 (Fun 𝐹 ↔ 𝐹:dom 𝐹⟢ran 𝐹)
5856, 57sylib 217 . . . . 5 (πœ‘ β†’ 𝐹:dom 𝐹⟢ran 𝐹)
5937difss2d 4134 . . . . 5 (πœ‘ β†’ ran 𝐹 βŠ† dom 𝐺)
6058, 59fssd 6735 . . . 4 (πœ‘ β†’ 𝐹:dom 𝐹⟢dom 𝐺)
61 fco 6741 . . . 4 ((𝐺:dom πΊβŸΆβ„‚ ∧ 𝐹:dom 𝐹⟢dom 𝐺) β†’ (𝐺 ∘ 𝐹):dom πΉβŸΆβ„‚)
626, 60, 61syl2anc 584 . . 3 (πœ‘ β†’ (𝐺 ∘ 𝐹):dom πΉβŸΆβ„‚)
6362, 22, 23, 9ellimc2 25618 . 2 (πœ‘ β†’ (𝐢 ∈ ((𝐺 ∘ 𝐹) limβ„‚ 𝐴) ↔ (𝐢 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑒 β†’ βˆƒπ‘€ ∈ (TopOpenβ€˜β„‚fld)(𝐴 ∈ 𝑀 ∧ ((𝐺 ∘ 𝐹) β€œ (𝑀 ∩ (dom 𝐹 βˆ– {𝐴}))) βŠ† 𝑒)))))
643, 55, 63mpbir2and 711 1 (πœ‘ β†’ 𝐢 ∈ ((𝐺 ∘ 𝐹) limβ„‚ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3945   ∩ cin 3947   βŠ† wss 3948  {csn 4628  dom cdm 5676  ran crn 5677   β€œ cima 5679   ∘ ccom 5680  Fun wfun 6537  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  β„‚cc 11110  TopOpenctopn 17371  β„‚fldccnfld 21144   limβ„‚ climc 25603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-fz 13489  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-mulr 17215  df-starv 17216  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-rest 17372  df-topn 17373  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cnp 22952  df-xms 24046  df-ms 24047  df-limc 25607
This theorem is referenced by:  dirkercncflem2  45119  fourierdlem53  45174  fourierdlem93  45214  fourierdlem111  45232
  Copyright terms: Public domain W3C validator