Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limccog Structured version   Visualization version   GIF version

Theorem limccog 45625
Description: Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐵 and the limit of 𝐺 at 𝐵 is 𝐶, then the limit of 𝐺𝐹 at 𝐴 is 𝐶. With respect to limcco 25801 and limccnp 25799, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limccog.1 (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵}))
limccog.2 (𝜑𝐵 ∈ (𝐹 lim 𝐴))
limccog.3 (𝜑𝐶 ∈ (𝐺 lim 𝐵))
Assertion
Ref Expression
limccog (𝜑𝐶 ∈ ((𝐺𝐹) lim 𝐴))

Proof of Theorem limccog
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25783 . . 3 (𝐺 lim 𝐵) ⊆ ℂ
2 limccog.3 . . 3 (𝜑𝐶 ∈ (𝐺 lim 𝐵))
31, 2sselid 3947 . 2 (𝜑𝐶 ∈ ℂ)
4 limcrcl 25782 . . . . . . . . . . . 12 (𝐶 ∈ (𝐺 lim 𝐵) → (𝐺:dom 𝐺⟶ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
52, 4syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺:dom 𝐺⟶ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65simp1d 1142 . . . . . . . . . 10 (𝜑𝐺:dom 𝐺⟶ℂ)
75simp2d 1143 . . . . . . . . . 10 (𝜑 → dom 𝐺 ⊆ ℂ)
85simp3d 1144 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
9 eqid 2730 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
106, 7, 8, 9ellimc2 25785 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐺 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))))
112, 10mpbid 232 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))))
1211simprd 495 . . . . . . 7 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))
1312r19.21bi 3230 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))
1413imp 406 . . . . 5 (((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))
15 simp1ll 1237 . . . . . . . 8 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝜑)
16 simp2 1137 . . . . . . . 8 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝑣 ∈ (TopOpen‘ℂfld))
17 simp3l 1202 . . . . . . . 8 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝐵𝑣)
18 limccog.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐹 lim 𝐴))
19 limcrcl 25782 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝐹 lim 𝐴) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ))
2120simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝐹:dom 𝐹⟶ℂ)
2220simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ⊆ ℂ)
2320simp3d 1144 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
2421, 22, 23, 9ellimc2 25785 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐴) ↔ (𝐵 ∈ ℂ ∧ ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))))
2518, 24mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℂ ∧ ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))))
2625simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))
2726r19.21bi 3230 . . . . . . . . 9 ((𝜑𝑣 ∈ (TopOpen‘ℂfld)) → (𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))
2827imp 406 . . . . . . . 8 (((𝜑𝑣 ∈ (TopOpen‘ℂfld)) ∧ 𝐵𝑣) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))
2915, 16, 17, 28syl21anc 837 . . . . . . 7 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))
30 imaco 6227 . . . . . . . . . . 11 ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) = (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))))
3115ad2antrr 726 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → 𝜑)
32 simpl3r 1230 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)
3332adantr 480 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)
34 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)
36 imassrn 6045 . . . . . . . . . . . . . . . . . 18 (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ ran 𝐹
37 limccog.1 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵}))
3836, 37sstrid 3961 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (dom 𝐺 ∖ {𝐵}))
3938adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (dom 𝐺 ∖ {𝐵}))
4035, 39ssind 4207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})))
41 imass2 6076 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))))
4240, 41syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))))
4342adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))))
44 simplr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)
4543, 44sstrd 3960 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ 𝑢)
4631, 33, 34, 45syl21anc 837 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ 𝑢)
4730, 46eqsstrid 3988 . . . . . . . . . 10 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)
4847ex 412 . . . . . . . . 9 (((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) → ((𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣 → ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))
4948anim2d 612 . . . . . . . 8 (((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) → ((𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5049reximdva 3147 . . . . . . 7 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → (∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5129, 50mpd 15 . . . . . 6 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))
5251rexlimdv3a 3139 . . . . 5 (((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5314, 52mpd 15 . . . 4 (((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))
5453ex 412 . . 3 ((𝜑𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5554ralrimiva 3126 . 2 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5621ffund 6695 . . . . . 6 (𝜑 → Fun 𝐹)
57 fdmrn 6722 . . . . . 6 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
5856, 57sylib 218 . . . . 5 (𝜑𝐹:dom 𝐹⟶ran 𝐹)
5937difss2d 4105 . . . . 5 (𝜑 → ran 𝐹 ⊆ dom 𝐺)
6058, 59fssd 6708 . . . 4 (𝜑𝐹:dom 𝐹⟶dom 𝐺)
61 fco 6715 . . . 4 ((𝐺:dom 𝐺⟶ℂ ∧ 𝐹:dom 𝐹⟶dom 𝐺) → (𝐺𝐹):dom 𝐹⟶ℂ)
626, 60, 61syl2anc 584 . . 3 (𝜑 → (𝐺𝐹):dom 𝐹⟶ℂ)
6362, 22, 23, 9ellimc2 25785 . 2 (𝜑 → (𝐶 ∈ ((𝐺𝐹) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))))
643, 55, 63mpbir2and 713 1 (𝜑𝐶 ∈ ((𝐺𝐹) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  {csn 4592  dom cdm 5641  ran crn 5642  cima 5644  ccom 5645  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  TopOpenctopn 17391  fldccnfld 21271   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  dirkercncflem2  46109  fourierdlem53  46164  fourierdlem93  46204  fourierdlem111  46222
  Copyright terms: Public domain W3C validator