Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr Structured version   Visualization version   GIF version

Theorem lfuhgr 35102
Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr
StepHypRef Expression
1 edgval 29081 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 lfuhgr.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
32rneqi 5951 . . . . 5 ran 𝐼 = ran (iEdg‘𝐺)
41, 3eqtr4i 2766 . . . 4 (Edg‘𝐺) = ran 𝐼
54sseq1i 4024 . . 3 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
62uhgrfun 29098 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
7 fdmrn 6768 . . . . . 6 (Fun 𝐼𝐼:dom 𝐼⟶ran 𝐼)
8 fss 6753 . . . . . . 7 ((𝐼:dom 𝐼⟶ran 𝐼 ∧ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
98ex 412 . . . . . 6 (𝐼:dom 𝐼⟶ran 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
107, 9sylbi 217 . . . . 5 (Fun 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
116, 10syl 17 . . . 4 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
12 frn 6744 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
1311, 12impbid1 225 . . 3 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
145, 13bitrid 283 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
15 uhgredgss 29163 . . . . 5 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1615difss2d 4149 . . . 4 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
17 lfuhgr.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1817pweqi 4621 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
1916, 18sseqtrrdi 4047 . . 3 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 𝑉)
20 ssrab 4083 . . . 4 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((Edg‘𝐺) ⊆ 𝒫 𝑉 ∧ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2120baib 535 . . 3 ((Edg‘𝐺) ⊆ 𝒫 𝑉 → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2219, 21syl 17 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2314, 22bitr3d 281 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wral 3059  {crab 3433  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  dom cdm 5689  ran crn 5690  Fun wfun 6557  wf 6559  cfv 6563  cle 11294  2c2 12319  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079  UHGraphcuhgr 29088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-edg 29080  df-uhgr 29090
This theorem is referenced by:  lfuhgr2  35103
  Copyright terms: Public domain W3C validator