Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr Structured version   Visualization version   GIF version

Theorem lfuhgr 34096
Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtxβ€˜πΊ)
lfuhgr.2 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
lfuhgr (𝐺 ∈ UHGraph β†’ (𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ βˆ€π‘₯ ∈ (Edgβ€˜πΊ)2 ≀ (β™―β€˜π‘₯)))
Distinct variable groups:   π‘₯,𝐺   π‘₯,𝑉
Allowed substitution hint:   𝐼(π‘₯)

Proof of Theorem lfuhgr
StepHypRef Expression
1 edgval 28298 . . . . 5 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
2 lfuhgr.2 . . . . . 6 𝐼 = (iEdgβ€˜πΊ)
32rneqi 5934 . . . . 5 ran 𝐼 = ran (iEdgβ€˜πΊ)
41, 3eqtr4i 2763 . . . 4 (Edgβ€˜πΊ) = ran 𝐼
54sseq1i 4009 . . 3 ((Edgβ€˜πΊ) βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)})
62uhgrfun 28315 . . . . 5 (𝐺 ∈ UHGraph β†’ Fun 𝐼)
7 fdmrn 6746 . . . . . 6 (Fun 𝐼 ↔ 𝐼:dom 𝐼⟢ran 𝐼)
8 fss 6731 . . . . . . 7 ((𝐼:dom 𝐼⟢ran 𝐼 ∧ ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}) β†’ 𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)})
98ex 413 . . . . . 6 (𝐼:dom 𝐼⟢ran 𝐼 β†’ (ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} β†’ 𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}))
107, 9sylbi 216 . . . . 5 (Fun 𝐼 β†’ (ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} β†’ 𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}))
116, 10syl 17 . . . 4 (𝐺 ∈ UHGraph β†’ (ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} β†’ 𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}))
12 frn 6721 . . . 4 (𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} β†’ ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)})
1311, 12impbid1 224 . . 3 (𝐺 ∈ UHGraph β†’ (ran 𝐼 βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ 𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}))
145, 13bitrid 282 . 2 (𝐺 ∈ UHGraph β†’ ((Edgβ€˜πΊ) βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ 𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)}))
15 uhgredgss 28380 . . . . 5 (𝐺 ∈ UHGraph β†’ (Edgβ€˜πΊ) βŠ† (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}))
1615difss2d 4133 . . . 4 (𝐺 ∈ UHGraph β†’ (Edgβ€˜πΊ) βŠ† 𝒫 (Vtxβ€˜πΊ))
17 lfuhgr.1 . . . . 5 𝑉 = (Vtxβ€˜πΊ)
1817pweqi 4617 . . . 4 𝒫 𝑉 = 𝒫 (Vtxβ€˜πΊ)
1916, 18sseqtrrdi 4032 . . 3 (𝐺 ∈ UHGraph β†’ (Edgβ€˜πΊ) βŠ† 𝒫 𝑉)
20 ssrab 4069 . . . 4 ((Edgβ€˜πΊ) βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ ((Edgβ€˜πΊ) βŠ† 𝒫 𝑉 ∧ βˆ€π‘₯ ∈ (Edgβ€˜πΊ)2 ≀ (β™―β€˜π‘₯)))
2120baib 536 . . 3 ((Edgβ€˜πΊ) βŠ† 𝒫 𝑉 β†’ ((Edgβ€˜πΊ) βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ βˆ€π‘₯ ∈ (Edgβ€˜πΊ)2 ≀ (β™―β€˜π‘₯)))
2219, 21syl 17 . 2 (𝐺 ∈ UHGraph β†’ ((Edgβ€˜πΊ) βŠ† {π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ βˆ€π‘₯ ∈ (Edgβ€˜πΊ)2 ≀ (β™―β€˜π‘₯)))
2314, 22bitr3d 280 1 (𝐺 ∈ UHGraph β†’ (𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} ↔ βˆ€π‘₯ ∈ (Edgβ€˜πΊ)2 ≀ (β™―β€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627   class class class wbr 5147  dom cdm 5675  ran crn 5676  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540   ≀ cle 11245  2c2 12263  β™―chash 14286  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  UHGraphcuhgr 28305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-edg 28297  df-uhgr 28307
This theorem is referenced by:  lfuhgr2  34097
  Copyright terms: Public domain W3C validator