Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr Structured version   Visualization version   GIF version

Theorem lfuhgr 33376
Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr
StepHypRef Expression
1 edgval 27708 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 lfuhgr.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
32rneqi 5883 . . . . 5 ran 𝐼 = ran (iEdg‘𝐺)
41, 3eqtr4i 2768 . . . 4 (Edg‘𝐺) = ran 𝐼
54sseq1i 3964 . . 3 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
62uhgrfun 27725 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
7 fdmrn 6688 . . . . . 6 (Fun 𝐼𝐼:dom 𝐼⟶ran 𝐼)
8 fss 6673 . . . . . . 7 ((𝐼:dom 𝐼⟶ran 𝐼 ∧ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
98ex 414 . . . . . 6 (𝐼:dom 𝐼⟶ran 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
107, 9sylbi 216 . . . . 5 (Fun 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
116, 10syl 17 . . . 4 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
12 frn 6663 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
1311, 12impbid1 224 . . 3 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
145, 13bitrid 283 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
15 uhgredgss 27790 . . . . 5 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1615difss2d 4086 . . . 4 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
17 lfuhgr.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1817pweqi 4568 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
1916, 18sseqtrrdi 3987 . . 3 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 𝑉)
20 ssrab 4022 . . . 4 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((Edg‘𝐺) ⊆ 𝒫 𝑉 ∧ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2120baib 537 . . 3 ((Edg‘𝐺) ⊆ 𝒫 𝑉 → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2219, 21syl 17 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2314, 22bitr3d 281 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3062  {crab 3404  wss 3902  c0 4274  𝒫 cpw 4552  {csn 4578   class class class wbr 5097  dom cdm 5625  ran crn 5626  Fun wfun 6478  wf 6480  cfv 6484  cle 11116  2c2 12134  chash 14150  Vtxcvtx 27655  iEdgciedg 27656  Edgcedg 27706  UHGraphcuhgr 27715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-edg 27707  df-uhgr 27717
This theorem is referenced by:  lfuhgr2  33377
  Copyright terms: Public domain W3C validator