Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr Structured version   Visualization version   GIF version

Theorem lfuhgr 35140
Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr
StepHypRef Expression
1 edgval 29028 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 lfuhgr.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
32rneqi 5917 . . . . 5 ran 𝐼 = ran (iEdg‘𝐺)
41, 3eqtr4i 2761 . . . 4 (Edg‘𝐺) = ran 𝐼
54sseq1i 3987 . . 3 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
62uhgrfun 29045 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
7 fdmrn 6737 . . . . . 6 (Fun 𝐼𝐼:dom 𝐼⟶ran 𝐼)
8 fss 6722 . . . . . . 7 ((𝐼:dom 𝐼⟶ran 𝐼 ∧ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
98ex 412 . . . . . 6 (𝐼:dom 𝐼⟶ran 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
107, 9sylbi 217 . . . . 5 (Fun 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
116, 10syl 17 . . . 4 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
12 frn 6713 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
1311, 12impbid1 225 . . 3 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
145, 13bitrid 283 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
15 uhgredgss 29110 . . . . 5 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1615difss2d 4114 . . . 4 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
17 lfuhgr.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1817pweqi 4591 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
1916, 18sseqtrrdi 4000 . . 3 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 𝑉)
20 ssrab 4048 . . . 4 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((Edg‘𝐺) ⊆ 𝒫 𝑉 ∧ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2120baib 535 . . 3 ((Edg‘𝐺) ⊆ 𝒫 𝑉 → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2219, 21syl 17 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2314, 22bitr3d 281 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  dom cdm 5654  ran crn 5655  Fun wfun 6525  wf 6527  cfv 6531  cle 11270  2c2 12295  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  UHGraphcuhgr 29035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-edg 29027  df-uhgr 29037
This theorem is referenced by:  lfuhgr2  35141
  Copyright terms: Public domain W3C validator