Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr Structured version   Visualization version   GIF version

Theorem lfuhgr 32979
Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr
StepHypRef Expression
1 edgval 27322 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 lfuhgr.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
32rneqi 5835 . . . . 5 ran 𝐼 = ran (iEdg‘𝐺)
41, 3eqtr4i 2769 . . . 4 (Edg‘𝐺) = ran 𝐼
54sseq1i 3945 . . 3 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
62uhgrfun 27339 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
7 fdmrn 6616 . . . . . 6 (Fun 𝐼𝐼:dom 𝐼⟶ran 𝐼)
8 fss 6601 . . . . . . 7 ((𝐼:dom 𝐼⟶ran 𝐼 ∧ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
98ex 412 . . . . . 6 (𝐼:dom 𝐼⟶ran 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
107, 9sylbi 216 . . . . 5 (Fun 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
116, 10syl 17 . . . 4 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
12 frn 6591 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
1311, 12impbid1 224 . . 3 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
145, 13syl5bb 282 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
15 uhgredgss 27404 . . . . 5 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1615difss2d 4065 . . . 4 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
17 lfuhgr.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1817pweqi 4548 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
1916, 18sseqtrrdi 3968 . . 3 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 𝑉)
20 ssrab 4002 . . . 4 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((Edg‘𝐺) ⊆ 𝒫 𝑉 ∧ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2120baib 535 . . 3 ((Edg‘𝐺) ⊆ 𝒫 𝑉 → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2219, 21syl 17 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2314, 22bitr3d 280 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412  wf 6414  cfv 6418  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-edg 27321  df-uhgr 27331
This theorem is referenced by:  lfuhgr2  32980
  Copyright terms: Public domain W3C validator