MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvof1o Structured version   Visualization version   GIF version

Theorem nvof1o 7146
Description: An involution is a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
nvof1o ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴1-1-onto𝐴)

Proof of Theorem nvof1o
StepHypRef Expression
1 fnfun 6529 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fdmrn 6628 . . . . . 6 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
31, 2sylib 217 . . . . 5 (𝐹 Fn 𝐴𝐹:dom 𝐹⟶ran 𝐹)
43adantr 480 . . . 4 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹)
5 fndm 6532 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65adantr 480 . . . . 5 ((𝐹 Fn 𝐴𝐹 = 𝐹) → dom 𝐹 = 𝐴)
7 df-rn 5599 . . . . . . 7 ran 𝐹 = dom 𝐹
8 dmeq 5809 . . . . . . 7 (𝐹 = 𝐹 → dom 𝐹 = dom 𝐹)
97, 8eqtrid 2791 . . . . . 6 (𝐹 = 𝐹 → ran 𝐹 = dom 𝐹)
109, 5sylan9eqr 2801 . . . . 5 ((𝐹 Fn 𝐴𝐹 = 𝐹) → ran 𝐹 = 𝐴)
116, 10feq23d 6591 . . . 4 ((𝐹 Fn 𝐴𝐹 = 𝐹) → (𝐹:dom 𝐹⟶ran 𝐹𝐹:𝐴𝐴))
124, 11mpbid 231 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴𝐴)
131adantr 480 . . . 4 ((𝐹 Fn 𝐴𝐹 = 𝐹) → Fun 𝐹)
14 funeq 6450 . . . . 5 (𝐹 = 𝐹 → (Fun 𝐹 ↔ Fun 𝐹))
1514adantl 481 . . . 4 ((𝐹 Fn 𝐴𝐹 = 𝐹) → (Fun 𝐹 ↔ Fun 𝐹))
1613, 15mpbird 256 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → Fun 𝐹)
17 df-f1 6435 . . 3 (𝐹:𝐴1-1𝐴 ↔ (𝐹:𝐴𝐴 ∧ Fun 𝐹))
1812, 16, 17sylanbrc 582 . 2 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴1-1𝐴)
19 simpl 482 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹 Fn 𝐴)
20 df-fo 6436 . . 3 (𝐹:𝐴onto𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴))
2119, 10, 20sylanbrc 582 . 2 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴onto𝐴)
22 df-f1o 6437 . 2 (𝐹:𝐴1-1-onto𝐴 ↔ (𝐹:𝐴1-1𝐴𝐹:𝐴onto𝐴))
2318, 21, 22sylanbrc 582 1 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  ccnv 5587  dom cdm 5588  ran crn 5589  Fun wfun 6424   Fn wfn 6425  wf 6426  1-1wf1 6427  ontowfo 6428  1-1-ontowf1o 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437
This theorem is referenced by:  mirf1o  27011  lmif1o  27137  dssmapf1od  41582
  Copyright terms: Public domain W3C validator