![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq12i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
feq12i.1 | ⊢ 𝐹 = 𝐺 |
feq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq12i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq12i.2 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2740 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | feq123 6737 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1461 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: climlimsupcex 45690 |
Copyright terms: Public domain | W3C validator |