MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12i Structured version   Visualization version   GIF version

Theorem feq12i 6652
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
feq12i.1 𝐹 = 𝐺
feq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
feq12i (𝐹:𝐴𝐶𝐺:𝐵𝐶)

Proof of Theorem feq12i
StepHypRef Expression
1 feq12i.1 . 2 𝐹 = 𝐺
2 feq12i.2 . 2 𝐴 = 𝐵
3 eqid 2733 . 2 𝐶 = 𝐶
4 feq123 6649 . 2 ((𝐹 = 𝐺𝐴 = 𝐵𝐶 = 𝐶) → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
51, 2, 3, 4mp3an 1463 1 (𝐹:𝐴𝐶𝐺:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  climlimsupcex  45929
  Copyright terms: Public domain W3C validator