MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12i Structured version   Visualization version   GIF version

Theorem feq12i 6740
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
feq12i.1 𝐹 = 𝐺
feq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
feq12i (𝐹:𝐴𝐶𝐺:𝐵𝐶)

Proof of Theorem feq12i
StepHypRef Expression
1 feq12i.1 . 2 𝐹 = 𝐺
2 feq12i.2 . 2 𝐴 = 𝐵
3 eqid 2740 . 2 𝐶 = 𝐶
4 feq123 6737 . 2 ((𝐹 = 𝐺𝐴 = 𝐵𝐶 = 𝐶) → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
51, 2, 3, 4mp3an 1461 1 (𝐹:𝐴𝐶𝐺:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  climlimsupcex  45690
  Copyright terms: Public domain W3C validator