![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq12i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
feq12i.1 | ⊢ 𝐹 = 𝐺 |
feq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq12i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq12i.2 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2735 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | feq123 6727 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: climlimsupcex 45725 |
Copyright terms: Public domain | W3C validator |