Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq12i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
feq12i.1 | ⊢ 𝐹 = 𝐺 |
feq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq12i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq12i.2 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2736 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | feq123 6635 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ⟶wf 6469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6475 df-fn 6476 df-f 6477 |
This theorem is referenced by: climlimsupcex 43635 |
Copyright terms: Public domain | W3C validator |