| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| feq12i.1 | ⊢ 𝐹 = 𝐺 |
| feq12i.2 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq12i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq12i.2 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | eqid 2736 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | feq123 6701 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: climlimsupcex 45765 |
| Copyright terms: Public domain | W3C validator |