MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12i Structured version   Visualization version   GIF version

Theorem feq12i 6711
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
feq12i.1 𝐹 = 𝐺
feq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
feq12i (𝐹:𝐴𝐶𝐺:𝐵𝐶)

Proof of Theorem feq12i
StepHypRef Expression
1 feq12i.1 . 2 𝐹 = 𝐺
2 feq12i.2 . 2 𝐴 = 𝐵
3 eqid 2730 . 2 𝐶 = 𝐶
4 feq123 6708 . 2 ((𝐹 = 𝐺𝐴 = 𝐵𝐶 = 𝐶) → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
51, 2, 3, 4mp3an 1459 1 (𝐹:𝐴𝐶𝐺:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  climlimsupcex  44785
  Copyright terms: Public domain W3C validator