Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq12i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
feq12i.1 | ⊢ 𝐹 = 𝐺 |
feq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq12i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq12i.2 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2738 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | feq123 6574 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: climlimsupcex 43200 |
Copyright terms: Public domain | W3C validator |