![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq123 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.) |
Ref | Expression |
---|---|
feq123 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1172 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐹 = 𝐺) | |
2 | simp2 1173 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐶) | |
3 | simp3 1174 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6268 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1113 = wceq 1658 ⟶wf 6120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4875 df-opab 4937 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-fun 6126 df-fn 6127 df-f 6128 |
This theorem is referenced by: feq12i 6272 hashfxnn0 13418 mbfresfi 34000 |
Copyright terms: Public domain | W3C validator |