| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq123 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.) |
| Ref | Expression |
|---|---|
| feq123 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐹 = 𝐺) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐶) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6700 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: feq12i 6704 hashfxnn0 14360 mbfresfi 37695 |
| Copyright terms: Public domain | W3C validator |