Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq123 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.) |
Ref | Expression |
---|---|
feq123 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐹 = 𝐺) | |
2 | simp2 1135 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐶) | |
3 | simp3 1136 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6585 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: feq12i 6589 hashfxnn0 14032 mbfresfi 35802 |
Copyright terms: Public domain | W3C validator |