MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123 Structured version   Visualization version   GIF version

Theorem feq123 6708
Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
Assertion
Ref Expression
feq123 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))

Proof of Theorem feq123
StepHypRef Expression
1 simp1 1137 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐹 = 𝐺)
2 simp2 1138 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
3 simp3 1139 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
41, 2, 3feq123d 6707 1 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  feq12i  6711  hashfxnn0  14297  mbfresfi  36534
  Copyright terms: Public domain W3C validator