MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123 Structured version   Visualization version   GIF version

Theorem feq123 6678
Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
Assertion
Ref Expression
feq123 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))

Proof of Theorem feq123
StepHypRef Expression
1 simp1 1136 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐹 = 𝐺)
2 simp2 1137 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
3 simp3 1138 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
41, 2, 3feq123d 6677 1 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  feq12i  6681  hashfxnn0  14302  mbfresfi  37660
  Copyright terms: Public domain W3C validator