Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
feq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | feq2 6578 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-fn 6433 df-f 6434 |
This theorem is referenced by: fco3OLD 6630 fresaun 6641 fmpox 7893 fmpo 7894 tposf 8054 issmo 8163 axdc3lem4 10193 cardf 10290 smobeth 10326 seqf2 13723 hashfxnn0 14032 snopiswrd 14207 iswrddm0 14222 s1dm 14294 s2dm 14584 ntrivcvgtail 15593 vdwlem8 16670 0ram 16702 gsumws1 18457 ga0 18885 efgsp1 19324 efgsfo 19326 efgredleme 19330 efgred 19335 ablfaclem2 19670 islinds2 21001 pmatcollpw3fi1lem1 21916 0met 23500 dvef 25125 dvfsumrlim2 25177 dchrisum0 26649 trgcgrg 26857 tgcgr4 26873 axlowdimlem4 27294 uhgr0e 27422 vtxdumgrval 27834 wlkp1 28029 pthdlem2 28115 0wlk 28459 0spth 28469 0clwlkv 28474 wlk2v2e 28500 wlkl0 28710 padct 31033 mbfmcnt 32214 coinfliprv 32428 noxp1o 33845 matunitlindf 35754 fdc 35882 grposnOLD 36019 rabren3dioph 40617 amgm2d 41762 amgm3d 41763 fourierdlem80 43681 sge0iun 43911 0ome 44021 issmflem 44214 2ffzoeq 44772 nnsum4primesodd 45200 nnsum4primesoddALTV 45201 nnsum4primeseven 45204 nnsum4primesevenALTV 45205 line2x 46052 line2y 46053 amgmw2d 46460 |
Copyright terms: Public domain | W3C validator |