![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
feq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | feq2 6729 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 df-f 6577 |
This theorem is referenced by: fco3OLD 6781 fresaun 6792 fmpox 8108 fmpo 8109 tposf 8295 issmo 8404 axdc3lem4 10522 cardf 10619 smobeth 10655 seqf2 14072 hashfxnn0 14386 snopiswrd 14571 iswrddm0 14586 s1dm 14656 s2dm 14939 s7f1o 15015 ntrivcvgtail 15948 vdwlem8 17035 0ram 17067 gsumws1 18873 ga0 19338 efgsp1 19779 efgsfo 19781 efgredleme 19785 efgred 19790 ablfaclem2 20130 islinds2 21856 rhmply1vsca 22413 pmatcollpw3fi1lem1 22813 0met 24397 dvef 26038 dvfsumrlim2 26093 dchrisum0 27582 noxp1o 27726 trgcgrg 28541 tgcgr4 28557 axlowdimlem4 28978 uhgr0e 29106 vtxdumgrval 29522 wlkp1 29717 pthdlem2 29804 0wlk 30148 0spth 30158 0clwlkv 30163 wlk2v2e 30189 wlkl0 30399 padct 32733 wrdpmtrlast 33086 mbfmcnt 34233 coinfliprv 34447 matunitlindf 37578 fdc 37705 grposnOLD 37842 rabren3dioph 42771 amgm2d 44160 amgm3d 44161 fourierdlem80 46107 sge0iun 46340 0ome 46450 issmflem 46648 2ffzoeq 47242 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 line2x 48488 line2y 48489 amgmw2d 48898 |
Copyright terms: Public domain | W3C validator |