| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6692 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-fn 6539 df-f 6540 |
| This theorem is referenced by: fresaun 6754 fmpox 8071 fmpo 8072 tposf 8258 issmo 8367 axdc3lem4 10472 cardf 10569 smobeth 10605 seqf2 14044 hashfxnn0 14360 snopiswrd 14546 iswrddm0 14561 s1dm 14631 s2dm 14914 s7f1o 14990 ntrivcvgtail 15921 vdwlem8 17013 0ram 17045 gsumws1 18821 ga0 19286 efgsp1 19723 efgsfo 19725 efgredleme 19729 efgred 19734 ablfaclem2 20074 islinds2 21778 rhmply1vsca 22331 pmatcollpw3fi1lem1 22729 0met 24310 dvef 25941 dvfsumrlim2 25996 dchrisum0 27488 noxp1o 27632 trgcgrg 28499 tgcgr4 28515 axlowdimlem4 28929 uhgr0e 29055 vtxdumgrval 29471 wlkp1 29666 pthdlem2 29755 0wlk 30102 0spth 30112 0clwlkv 30117 wlk2v2e 30143 wlkl0 30353 padct 32702 wrdpmtrlast 33109 mbfmcnt 34305 coinfliprv 34520 matunitlindf 37647 fdc 37774 grposnOLD 37911 rabren3dioph 42805 amgm2d 44189 amgm3d 44190 fourierdlem80 46182 sge0iun 46415 0ome 46525 issmflem 46723 2ffzoeq 47323 nnsum4primesodd 47777 nnsum4primesoddALTV 47778 nnsum4primeseven 47781 nnsum4primesevenALTV 47782 line2x 48701 line2y 48702 amgmw2d 49635 |
| Copyright terms: Public domain | W3C validator |