Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
feq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | feq2 6582 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-fn 6436 df-f 6437 |
This theorem is referenced by: fco3OLD 6634 fresaun 6645 fmpox 7907 fmpo 7908 tposf 8070 issmo 8179 axdc3lem4 10209 cardf 10306 smobeth 10342 seqf2 13742 hashfxnn0 14051 snopiswrd 14226 iswrddm0 14241 s1dm 14313 s2dm 14603 ntrivcvgtail 15612 vdwlem8 16689 0ram 16721 gsumws1 18476 ga0 18904 efgsp1 19343 efgsfo 19345 efgredleme 19349 efgred 19354 ablfaclem2 19689 islinds2 21020 pmatcollpw3fi1lem1 21935 0met 23519 dvef 25144 dvfsumrlim2 25196 dchrisum0 26668 trgcgrg 26876 tgcgr4 26892 axlowdimlem4 27313 uhgr0e 27441 vtxdumgrval 27853 wlkp1 28049 pthdlem2 28136 0wlk 28480 0spth 28490 0clwlkv 28495 wlk2v2e 28521 wlkl0 28731 padct 31054 mbfmcnt 32235 coinfliprv 32449 noxp1o 33866 matunitlindf 35775 fdc 35903 grposnOLD 36040 rabren3dioph 40637 amgm2d 41809 amgm3d 41810 fourierdlem80 43727 sge0iun 43957 0ome 44067 issmflem 44263 2ffzoeq 44820 nnsum4primesodd 45248 nnsum4primesoddALTV 45249 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 line2x 46100 line2y 46101 amgmw2d 46508 |
Copyright terms: Public domain | W3C validator |