| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6637 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-fn 6491 df-f 6492 |
| This theorem is referenced by: fresaun 6701 fmpox 8007 fmpo 8008 tposf 8192 issmo 8276 axdc3lem4 10353 cardf 10450 smobeth 10486 seqf2 13932 hashfxnn0 14248 snopiswrd 14434 iswrddm0 14449 s1dm 14520 s2dm 14801 s7f1o 14877 ntrivcvgtail 15811 vdwlem8 16904 0ram 16936 gsumws1 18750 ga0 19214 efgsp1 19653 efgsfo 19655 efgredleme 19659 efgred 19664 ablfaclem2 20004 islinds2 21754 rhmply1vsca 22306 pmatcollpw3fi1lem1 22704 0met 24284 dvef 25914 dvfsumrlim2 25969 dchrisum0 27461 noxp1o 27605 trgcgrg 28496 tgcgr4 28512 axlowdimlem4 28927 uhgr0e 29053 vtxdumgrval 29469 wlkp1 29662 pthdlem2 29750 0wlk 30100 0spth 30110 0clwlkv 30115 wlk2v2e 30141 wlkl0 30351 padct 32707 wrdpmtrlast 33071 mbfmcnt 34304 coinfliprv 34519 matunitlindf 37681 fdc 37808 grposnOLD 37945 rabren3dioph 42935 amgm2d 44318 amgm3d 44319 fourierdlem80 46311 sge0iun 46544 0ome 46654 issmflem 46852 2ffzoeq 47454 nnsum4primesodd 47923 nnsum4primesoddALTV 47924 nnsum4primeseven 47927 nnsum4primesevenALTV 47928 line2x 48882 line2y 48883 amgmw2d 49932 |
| Copyright terms: Public domain | W3C validator |