| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6670 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fresaun 6734 fmpox 8049 fmpo 8050 tposf 8236 issmo 8320 axdc3lem4 10413 cardf 10510 smobeth 10546 seqf2 13993 hashfxnn0 14309 snopiswrd 14495 iswrddm0 14510 s1dm 14580 s2dm 14863 s7f1o 14939 ntrivcvgtail 15873 vdwlem8 16966 0ram 16998 gsumws1 18772 ga0 19237 efgsp1 19674 efgsfo 19676 efgredleme 19680 efgred 19685 ablfaclem2 20025 islinds2 21729 rhmply1vsca 22282 pmatcollpw3fi1lem1 22680 0met 24261 dvef 25891 dvfsumrlim2 25946 dchrisum0 27438 noxp1o 27582 trgcgrg 28449 tgcgr4 28465 axlowdimlem4 28879 uhgr0e 29005 vtxdumgrval 29421 wlkp1 29616 pthdlem2 29705 0wlk 30052 0spth 30062 0clwlkv 30067 wlk2v2e 30093 wlkl0 30303 padct 32650 wrdpmtrlast 33057 mbfmcnt 34266 coinfliprv 34481 matunitlindf 37619 fdc 37746 grposnOLD 37883 rabren3dioph 42810 amgm2d 44194 amgm3d 44195 fourierdlem80 46191 sge0iun 46424 0ome 46534 issmflem 46732 2ffzoeq 47332 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 line2x 48747 line2y 48748 amgmw2d 49797 |
| Copyright terms: Public domain | W3C validator |