| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6635 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fresaun 6699 fmpox 8009 fmpo 8010 tposf 8194 issmo 8278 axdc3lem4 10366 cardf 10463 smobeth 10499 seqf2 13946 hashfxnn0 14262 snopiswrd 14448 iswrddm0 14463 s1dm 14533 s2dm 14815 s7f1o 14891 ntrivcvgtail 15825 vdwlem8 16918 0ram 16950 gsumws1 18730 ga0 19195 efgsp1 19634 efgsfo 19636 efgredleme 19640 efgred 19645 ablfaclem2 19985 islinds2 21738 rhmply1vsca 22291 pmatcollpw3fi1lem1 22689 0met 24270 dvef 25900 dvfsumrlim2 25955 dchrisum0 27447 noxp1o 27591 trgcgrg 28478 tgcgr4 28494 axlowdimlem4 28908 uhgr0e 29034 vtxdumgrval 29450 wlkp1 29643 pthdlem2 29731 0wlk 30078 0spth 30088 0clwlkv 30093 wlk2v2e 30119 wlkl0 30329 padct 32676 wrdpmtrlast 33048 mbfmcnt 34238 coinfliprv 34453 matunitlindf 37600 fdc 37727 grposnOLD 37864 rabren3dioph 42791 amgm2d 44174 amgm3d 44175 fourierdlem80 46171 sge0iun 46404 0ome 46514 issmflem 46712 2ffzoeq 47315 nnsum4primesodd 47784 nnsum4primesoddALTV 47785 nnsum4primeseven 47788 nnsum4primesevenALTV 47789 line2x 48743 line2y 48744 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |