| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6630 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fresaun 6694 fmpox 7999 fmpo 8000 tposf 8184 issmo 8268 axdc3lem4 10344 cardf 10441 smobeth 10477 seqf2 13928 hashfxnn0 14244 snopiswrd 14430 iswrddm0 14445 s1dm 14516 s2dm 14797 s7f1o 14873 ntrivcvgtail 15807 vdwlem8 16900 0ram 16932 gsumws1 18746 ga0 19211 efgsp1 19650 efgsfo 19652 efgredleme 19656 efgred 19661 ablfaclem2 20001 islinds2 21751 rhmply1vsca 22304 pmatcollpw3fi1lem1 22702 0met 24282 dvef 25912 dvfsumrlim2 25967 dchrisum0 27459 noxp1o 27603 trgcgrg 28494 tgcgr4 28510 axlowdimlem4 28924 uhgr0e 29050 vtxdumgrval 29466 wlkp1 29659 pthdlem2 29747 0wlk 30094 0spth 30104 0clwlkv 30109 wlk2v2e 30135 wlkl0 30345 padct 32699 wrdpmtrlast 33060 mbfmcnt 34279 coinfliprv 34494 matunitlindf 37664 fdc 37791 grposnOLD 37928 rabren3dioph 42854 amgm2d 44237 amgm3d 44238 fourierdlem80 46230 sge0iun 46463 0ome 46573 issmflem 46771 2ffzoeq 47364 nnsum4primesodd 47833 nnsum4primesoddALTV 47834 nnsum4primeseven 47837 nnsum4primesevenALTV 47838 line2x 48792 line2y 48793 amgmw2d 49842 |
| Copyright terms: Public domain | W3C validator |