![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
feq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | feq2 6717 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-fn 6565 df-f 6566 |
This theorem is referenced by: fresaun 6779 fmpox 8090 fmpo 8091 tposf 8277 issmo 8386 axdc3lem4 10490 cardf 10587 smobeth 10623 seqf2 14058 hashfxnn0 14372 snopiswrd 14557 iswrddm0 14572 s1dm 14642 s2dm 14925 s7f1o 15001 ntrivcvgtail 15932 vdwlem8 17021 0ram 17053 gsumws1 18863 ga0 19328 efgsp1 19769 efgsfo 19771 efgredleme 19775 efgred 19780 ablfaclem2 20120 islinds2 21850 rhmply1vsca 22407 pmatcollpw3fi1lem1 22807 0met 24391 dvef 26032 dvfsumrlim2 26087 dchrisum0 27578 noxp1o 27722 trgcgrg 28537 tgcgr4 28553 axlowdimlem4 28974 uhgr0e 29102 vtxdumgrval 29518 wlkp1 29713 pthdlem2 29800 0wlk 30144 0spth 30154 0clwlkv 30159 wlk2v2e 30185 wlkl0 30395 padct 32736 wrdpmtrlast 33095 mbfmcnt 34249 coinfliprv 34463 matunitlindf 37604 fdc 37731 grposnOLD 37868 rabren3dioph 42802 amgm2d 44187 amgm3d 44188 fourierdlem80 46141 sge0iun 46374 0ome 46484 issmflem 46682 2ffzoeq 47276 nnsum4primesodd 47720 nnsum4primesoddALTV 47721 nnsum4primeseven 47724 nnsum4primesevenALTV 47725 line2x 48603 line2y 48604 amgmw2d 49034 |
Copyright terms: Public domain | W3C validator |