Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
feq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | feq2 6566 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 df-f 6422 |
This theorem is referenced by: fco3OLD 6618 fresaun 6629 fmpox 7880 fmpo 7881 tposf 8041 issmo 8150 axdc3lem4 10140 cardf 10237 smobeth 10273 seqf2 13670 hashfxnn0 13979 snopiswrd 14154 iswrddm0 14169 s1dm 14241 s2dm 14531 ntrivcvgtail 15540 vdwlem8 16617 0ram 16649 gsumws1 18391 ga0 18819 efgsp1 19258 efgsfo 19260 efgredleme 19264 efgred 19269 ablfaclem2 19604 islinds2 20930 pmatcollpw3fi1lem1 21843 0met 23427 dvef 25049 dvfsumrlim2 25101 dchrisum0 26573 trgcgrg 26780 tgcgr4 26796 axlowdimlem4 27216 uhgr0e 27344 vtxdumgrval 27756 wlkp1 27951 pthdlem2 28037 0wlk 28381 0spth 28391 0clwlkv 28396 wlk2v2e 28422 wlkl0 28632 padct 30956 mbfmcnt 32135 coinfliprv 32349 noxp1o 33793 matunitlindf 35702 fdc 35830 grposnOLD 35967 rabren3dioph 40553 amgm2d 41698 amgm3d 41699 fourierdlem80 43617 sge0iun 43847 0ome 43957 issmflem 44150 2ffzoeq 44708 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 line2x 45988 line2y 45989 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |