| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6667 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fresaun 6731 fmpox 8046 fmpo 8047 tposf 8233 issmo 8317 axdc3lem4 10406 cardf 10503 smobeth 10539 seqf2 13986 hashfxnn0 14302 snopiswrd 14488 iswrddm0 14503 s1dm 14573 s2dm 14856 s7f1o 14932 ntrivcvgtail 15866 vdwlem8 16959 0ram 16991 gsumws1 18765 ga0 19230 efgsp1 19667 efgsfo 19669 efgredleme 19673 efgred 19678 ablfaclem2 20018 islinds2 21722 rhmply1vsca 22275 pmatcollpw3fi1lem1 22673 0met 24254 dvef 25884 dvfsumrlim2 25939 dchrisum0 27431 noxp1o 27575 trgcgrg 28442 tgcgr4 28458 axlowdimlem4 28872 uhgr0e 28998 vtxdumgrval 29414 wlkp1 29609 pthdlem2 29698 0wlk 30045 0spth 30055 0clwlkv 30060 wlk2v2e 30086 wlkl0 30296 padct 32643 wrdpmtrlast 33050 mbfmcnt 34259 coinfliprv 34474 matunitlindf 37612 fdc 37739 grposnOLD 37876 rabren3dioph 42803 amgm2d 44187 amgm3d 44188 fourierdlem80 46184 sge0iun 46417 0ome 46527 issmflem 46725 2ffzoeq 47328 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 line2x 48743 line2y 48744 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |