| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| feq2i | ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | feq2 6697 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ⟶wf 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-fn 6544 df-f 6545 |
| This theorem is referenced by: fresaun 6759 fmpox 8074 fmpo 8075 tposf 8261 issmo 8370 axdc3lem4 10475 cardf 10572 smobeth 10608 seqf2 14044 hashfxnn0 14358 snopiswrd 14543 iswrddm0 14558 s1dm 14628 s2dm 14911 s7f1o 14987 ntrivcvgtail 15918 vdwlem8 17008 0ram 17040 gsumws1 18820 ga0 19285 efgsp1 19723 efgsfo 19725 efgredleme 19729 efgred 19734 ablfaclem2 20074 islinds2 21787 rhmply1vsca 22340 pmatcollpw3fi1lem1 22740 0met 24321 dvef 25954 dvfsumrlim2 26009 dchrisum0 27500 noxp1o 27644 trgcgrg 28459 tgcgr4 28475 axlowdimlem4 28890 uhgr0e 29016 vtxdumgrval 29432 wlkp1 29627 pthdlem2 29716 0wlk 30063 0spth 30073 0clwlkv 30078 wlk2v2e 30104 wlkl0 30314 padct 32666 wrdpmtrlast 33052 mbfmcnt 34229 coinfliprv 34444 matunitlindf 37584 fdc 37711 grposnOLD 37848 rabren3dioph 42789 amgm2d 44173 amgm3d 44174 fourierdlem80 46158 sge0iun 46391 0ome 46501 issmflem 46699 2ffzoeq 47297 nnsum4primesodd 47741 nnsum4primesoddALTV 47742 nnsum4primeseven 47745 nnsum4primesevenALTV 47746 line2x 48633 line2y 48634 amgmw2d 49331 |
| Copyright terms: Public domain | W3C validator |