Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftpg Structured version   Visualization version   GIF version

Theorem ftpg 6915
 Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 1145 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 1145 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 1133 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 fprg 6914 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
51, 2, 3, 4syl3an 1157 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
6 eqidd 2759 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩})
7 simp3 1135 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
8 simp3 1135 . . . . . . 7 ((𝐴𝐹𝐵𝐺𝐶𝐻) → 𝐶𝐻)
97, 8anim12i 615 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻)) → (𝑍𝑊𝐶𝐻))
1093adant3 1129 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑍𝑊𝐶𝐻))
11 fsng 6896 . . . . 5 ((𝑍𝑊𝐶𝐻) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
1210, 11syl 17 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
136, 12mpbird 260 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶})
14 elpri 4547 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
15 eqcom 2765 . . . . . . . . . . 11 (𝑍 = 𝑋𝑋 = 𝑍)
16 nne 2955 . . . . . . . . . . 11 𝑋𝑍𝑋 = 𝑍)
1715, 16bitr4i 281 . . . . . . . . . 10 (𝑍 = 𝑋 ↔ ¬ 𝑋𝑍)
18 eqcom 2765 . . . . . . . . . . 11 (𝑍 = 𝑌𝑌 = 𝑍)
19 nne 2955 . . . . . . . . . . 11 𝑌𝑍𝑌 = 𝑍)
2018, 19bitr4i 281 . . . . . . . . . 10 (𝑍 = 𝑌 ↔ ¬ 𝑌𝑍)
2117, 20orbi12i 912 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) ↔ (¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
22 ianor 979 . . . . . . . . 9 (¬ (𝑋𝑍𝑌𝑍) ↔ (¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2321, 22sylbb2 241 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑍𝑌𝑍))
2414, 23syl 17 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑍𝑌𝑍))
2524con2i 141 . . . . . 6 ((𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
26253adant1 1127 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
27263ad2ant3 1132 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
28 disjsn 4607 . . . 4 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
2927, 28sylibr 237 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
30 fun 6530 . . 3 ((({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵} ∧ {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶}) ∧ ({𝑋, 𝑌} ∩ {𝑍}) = ∅) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
315, 13, 29, 30syl21anc 836 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
32 df-tp 4530 . . . 4 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3332feq1i 6494 . . 3 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
34 df-tp 4530 . . . 4 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
35 df-tp 4530 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
3634, 35feq23i 6497 . . 3 (({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3733, 36bitri 278 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3831, 37sylibr 237 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   ∪ cun 3858   ∩ cin 3859  ∅c0 4227  {csn 4525  {cpr 4527  {ctp 4529  ⟨cop 4531  ⟶wf 6336 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347 This theorem is referenced by:  ftp  6916
 Copyright terms: Public domain W3C validator