MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgredgge2 Structured version   Visualization version   GIF version

Theorem lfgredgge2 29095
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfgredgge2 ((𝐼:𝐴𝐸𝑋𝐴) → 2 ≤ (♯‘(𝐼𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem lfgredgge2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 𝐴 = 𝐴
2 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
31, 2feq23i 6641 . . . 4 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
43biimpi 216 . . 3 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
54ffvelcdmda 7012 . 2 ((𝐼:𝐴𝐸𝑋𝐴) → (𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
6 fveq2 6817 . . . . 5 (𝑦 = (𝐼𝑋) → (♯‘𝑦) = (♯‘(𝐼𝑋)))
76breq2d 5101 . . . 4 (𝑦 = (𝐼𝑋) → (2 ≤ (♯‘𝑦) ↔ 2 ≤ (♯‘(𝐼𝑋))))
8 fveq2 6817 . . . . . 6 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98breq2d 5101 . . . . 5 (𝑥 = 𝑦 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝑦)))
109cbvrabv 3403 . . . 4 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑦)}
117, 10elrab2 3648 . . 3 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼𝑋))))
1211simprbi 496 . 2 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 2 ≤ (♯‘(𝐼𝑋)))
135, 12syl 17 1 ((𝐼:𝐴𝐸𝑋𝐴) → 2 ≤ (♯‘(𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  {crab 3393  𝒫 cpw 4548   class class class wbr 5089  dom cdm 5614  wf 6473  cfv 6477  cle 11139  2c2 12172  chash 14229  iEdgciedg 28968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485
This theorem is referenced by:  lfgrnloop  29096
  Copyright terms: Public domain W3C validator