Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lfgredgge2 | Structured version Visualization version GIF version |
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
Ref | Expression |
---|---|
lfgredgge2 | ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
2 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
3 | 1, 2 | feq23i 6578 | . . . 4 ⊢ (𝐼:𝐴⟶𝐸 ↔ 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
4 | 3 | biimpi 215 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
5 | 4 | ffvelrnda 6943 | . 2 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → (𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
6 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = (𝐼‘𝑋) → (♯‘𝑦) = (♯‘(𝐼‘𝑋))) | |
7 | 6 | breq2d 5082 | . . . 4 ⊢ (𝑦 = (𝐼‘𝑋) → (2 ≤ (♯‘𝑦) ↔ 2 ≤ (♯‘(𝐼‘𝑋)))) |
8 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) | |
9 | 8 | breq2d 5082 | . . . . 5 ⊢ (𝑥 = 𝑦 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝑦))) |
10 | 9 | cbvrabv 3416 | . . . 4 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑦)} |
11 | 7, 10 | elrab2 3620 | . . 3 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼‘𝑋) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘𝑋)))) |
12 | 11 | simprbi 496 | . 2 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 2 ≤ (♯‘(𝐼‘𝑋))) |
13 | 5, 12 | syl 17 | 1 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 𝒫 cpw 4530 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 ≤ cle 10941 2c2 11958 ♯chash 13972 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: lfgrnloop 27398 |
Copyright terms: Public domain | W3C validator |