| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgr0 | Structured version Visualization version GIF version | ||
| Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgr0 | ⊢ ∅ ∈ UHGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6709 | . . 3 ⊢ ∅:∅⟶∅ | |
| 2 | dm0 5864 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | pw0 4763 | . . . . . 6 ⊢ 𝒫 ∅ = {∅} | |
| 4 | 3 | difeq1i 4071 | . . . . 5 ⊢ (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅}) |
| 5 | difid 4325 | . . . . 5 ⊢ ({∅} ∖ {∅}) = ∅ | |
| 6 | 4, 5 | eqtri 2756 | . . . 4 ⊢ (𝒫 ∅ ∖ {∅}) = ∅ |
| 7 | 2, 6 | feq23i 6650 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) ↔ ∅:∅⟶∅) |
| 8 | 1, 7 | mpbir 231 | . 2 ⊢ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) |
| 9 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 10 | vtxval0 29019 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
| 11 | 10 | eqcomi 2742 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
| 12 | iedgval0 29020 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
| 13 | 12 | eqcomi 2742 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
| 14 | 11, 13 | isuhgr 29040 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}))) |
| 15 | 9, 14 | ax-mp 5 | . 2 ⊢ (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})) |
| 16 | 8, 15 | mpbir 231 | 1 ⊢ ∅ ∈ UHGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∅c0 4282 𝒫 cpw 4549 {csn 4575 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 UHGraphcuhgr 29036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-dec 12595 df-slot 17095 df-ndx 17107 df-base 17123 df-edgf 28969 df-vtx 28978 df-iedg 28979 df-uhgr 29038 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |