MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0 Structured version   Visualization version   GIF version

Theorem uhgr0 26854
Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0 ∅ ∈ UHGraph

Proof of Theorem uhgr0
StepHypRef Expression
1 f0 6553 . . 3 ∅:∅⟶∅
2 dm0 5783 . . . 4 dom ∅ = ∅
3 pw0 4738 . . . . . 6 𝒫 ∅ = {∅}
43difeq1i 4088 . . . . 5 (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅})
5 difid 4323 . . . . 5 ({∅} ∖ {∅}) = ∅
64, 5eqtri 2843 . . . 4 (𝒫 ∅ ∖ {∅}) = ∅
72, 6feq23i 6501 . . 3 (∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) ↔ ∅:∅⟶∅)
81, 7mpbir 233 . 2 ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})
9 0ex 5204 . . 3 ∅ ∈ V
10 vtxval0 26820 . . . . 5 (Vtx‘∅) = ∅
1110eqcomi 2829 . . . 4 ∅ = (Vtx‘∅)
12 iedgval0 26821 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2829 . . . 4 ∅ = (iEdg‘∅)
1411, 13isuhgr 26841 . . 3 (∅ ∈ V → (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})))
159, 14ax-mp 5 . 2 (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}))
168, 15mpbir 233 1 ∅ ∈ UHGraph
Colors of variables: wff setvar class
Syntax hints:  wb 208  wcel 2113  Vcvv 3491  cdif 3926  c0 4284  𝒫 cpw 4532  {csn 4560  dom cdm 5548  wf 6344  cfv 6348  Vtxcvtx 26777  iEdgciedg 26778  UHGraphcuhgr 26837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-slot 16480  df-base 16482  df-edgf 26771  df-vtx 26779  df-iedg 26780  df-uhgr 26839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator