MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoppc Structured version   Visualization version   GIF version

Theorem funcoppc 17926
Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
funcoppc.o 𝑂 = (oppCat‘𝐶)
funcoppc.p 𝑃 = (oppCat‘𝐷)
funcoppc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
funcoppc (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)

Proof of Theorem funcoppc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcoppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 eqid 2735 . . 3 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17764 . 2 (Base‘𝐶) = (Base‘𝑂)
4 funcoppc.p . . 3 𝑃 = (oppCat‘𝐷)
5 eqid 2735 . . 3 (Base‘𝐷) = (Base‘𝐷)
64, 5oppcbas 17764 . 2 (Base‘𝐷) = (Base‘𝑃)
7 eqid 2735 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
8 eqid 2735 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
9 eqid 2735 . 2 (Id‘𝑂) = (Id‘𝑂)
10 eqid 2735 . 2 (Id‘𝑃) = (Id‘𝑃)
11 eqid 2735 . 2 (comp‘𝑂) = (comp‘𝑂)
12 eqid 2735 . 2 (comp‘𝑃) = (comp‘𝑃)
13 funcoppc.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
14 df-br 5149 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
16 funcrcl 17914 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1715, 16syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1817simpld 494 . . 3 (𝜑𝐶 ∈ Cat)
191oppccat 17769 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2018, 19syl 17 . 2 (𝜑𝑂 ∈ Cat)
214oppccat 17769 . . 3 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
2217, 21simpl2im 503 . 2 (𝜑𝑃 ∈ Cat)
232, 5, 13funcf1 17917 . 2 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
242, 13funcfn2 17920 . . 3 (𝜑𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
25 tposfn 8279 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
2624, 25syl 17 . 2 (𝜑 → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 eqid 2735 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
28 eqid 2735 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
2913adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
30 simprr 773 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
31 simprl 771 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
322, 27, 28, 29, 30, 31funcf2 17919 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
33 ovtpos 8265 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
3433feq1i 6728 . . . 4 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
3527, 1oppchom 17761 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
3628, 4oppchom 17761 . . . . 5 ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥))
3735, 36feq23i 6731 . . . 4 ((𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3834, 37bitri 275 . . 3 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3932, 38sylibr 234 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
40 eqid 2735 . . . 4 (Id‘𝐶) = (Id‘𝐶)
41 eqid 2735 . . . 4 (Id‘𝐷) = (Id‘𝐷)
4213adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
43 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
442, 40, 41, 42, 43funcid 17921 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
45 ovtpos 8265 . . . . 5 (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥)
4645a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥))
471, 40oppcid 17768 . . . . . . 7 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
4818, 47syl 17 . . . . . 6 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
4948adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑂) = (Id‘𝐶))
5049fveq1d 6909 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑂)‘𝑥) = ((Id‘𝐶)‘𝑥))
5146, 50fveq12d 6914 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)))
524, 41oppcid 17768 . . . . . 6 (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷))
5317, 52simpl2im 503 . . . . 5 (𝜑 → (Id‘𝑃) = (Id‘𝐷))
5453adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑃) = (Id‘𝐷))
5554fveq1d 6909 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑃)‘(𝐹𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
5644, 51, 553eqtr4d 2785 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((Id‘𝑃)‘(𝐹𝑥)))
57 eqid 2735 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
58 eqid 2735 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
59133ad2ant1 1132 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹(𝐶 Func 𝐷)𝐺)
60 simp23 1207 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑧 ∈ (Base‘𝐶))
61 simp22 1206 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑦 ∈ (Base‘𝐶))
62 simp21 1205 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑥 ∈ (Base‘𝐶))
63 simp3r 1201 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
6427, 1oppchom 17761 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
6563, 64eleqtrdi 2849 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
66 simp3l 1200 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
6766, 35eleqtrdi 2849 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
682, 27, 57, 58, 59, 60, 61, 62, 65, 67funcco 17922 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
692, 57, 1, 62, 61, 60oppcco 17763 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
7069fveq2d 6911 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
71233ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
7271, 62ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑥) ∈ (Base‘𝐷))
7371, 61ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑦) ∈ (Base‘𝐷))
7471, 60ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑧) ∈ (Base‘𝐷))
755, 58, 4, 72, 73, 74oppcco 17763 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
7668, 70, 753eqtr4d 2785 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)))
77 ovtpos 8265 . . . 4 (𝑥tpos 𝐺𝑧) = (𝑧𝐺𝑥)
7877fveq1i 6908 . . 3 ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
79 ovtpos 8265 . . . . 5 (𝑦tpos 𝐺𝑧) = (𝑧𝐺𝑦)
8079fveq1i 6908 . . . 4 ((𝑦tpos 𝐺𝑧)‘𝑔) = ((𝑧𝐺𝑦)‘𝑔)
8133fveq1i 6908 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑓) = ((𝑦𝐺𝑥)‘𝑓)
8280, 81oveq12i 7443 . . 3 (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓))
8376, 78, 823eqtr4g 2800 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)))
843, 6, 7, 8, 9, 10, 11, 12, 20, 22, 23, 26, 39, 56, 83isfuncd 17916 1 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148   × cxp 5687   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  tpos ctpos 8249  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710  oppCatcoppc 17756   Func cfunc 17905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-hom 17322  df-cco 17323  df-cat 17713  df-cid 17714  df-oppc 17757  df-func 17909
This theorem is referenced by:  fulloppc  17976  fthoppc  17977  yonedalem1  18329  yonedalem21  18330  yonedalem22  18335
  Copyright terms: Public domain W3C validator