MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoppc Structured version   Visualization version   GIF version

Theorem funcoppc 17590
Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
funcoppc.o 𝑂 = (oppCat‘𝐶)
funcoppc.p 𝑃 = (oppCat‘𝐷)
funcoppc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
funcoppc (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)

Proof of Theorem funcoppc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcoppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 eqid 2738 . . 3 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17428 . 2 (Base‘𝐶) = (Base‘𝑂)
4 funcoppc.p . . 3 𝑃 = (oppCat‘𝐷)
5 eqid 2738 . . 3 (Base‘𝐷) = (Base‘𝐷)
64, 5oppcbas 17428 . 2 (Base‘𝐷) = (Base‘𝑃)
7 eqid 2738 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
8 eqid 2738 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
9 eqid 2738 . 2 (Id‘𝑂) = (Id‘𝑂)
10 eqid 2738 . 2 (Id‘𝑃) = (Id‘𝑃)
11 eqid 2738 . 2 (comp‘𝑂) = (comp‘𝑂)
12 eqid 2738 . 2 (comp‘𝑃) = (comp‘𝑃)
13 funcoppc.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
14 df-br 5075 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylib 217 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
16 funcrcl 17578 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1715, 16syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1817simpld 495 . . 3 (𝜑𝐶 ∈ Cat)
191oppccat 17433 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2018, 19syl 17 . 2 (𝜑𝑂 ∈ Cat)
214oppccat 17433 . . 3 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
2217, 21simpl2im 504 . 2 (𝜑𝑃 ∈ Cat)
232, 5, 13funcf1 17581 . 2 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
242, 13funcfn2 17584 . . 3 (𝜑𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
25 tposfn 8071 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
2624, 25syl 17 . 2 (𝜑 → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
28 eqid 2738 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
2913adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
30 simprr 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
31 simprl 768 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
322, 27, 28, 29, 30, 31funcf2 17583 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
33 ovtpos 8057 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
3433feq1i 6591 . . . 4 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
3527, 1oppchom 17425 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
3628, 4oppchom 17425 . . . . 5 ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥))
3735, 36feq23i 6594 . . . 4 ((𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3834, 37bitri 274 . . 3 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3932, 38sylibr 233 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
40 eqid 2738 . . . 4 (Id‘𝐶) = (Id‘𝐶)
41 eqid 2738 . . . 4 (Id‘𝐷) = (Id‘𝐷)
4213adantr 481 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
43 simpr 485 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
442, 40, 41, 42, 43funcid 17585 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
45 ovtpos 8057 . . . . 5 (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥)
4645a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥))
471, 40oppcid 17432 . . . . . . 7 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
4818, 47syl 17 . . . . . 6 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
4948adantr 481 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑂) = (Id‘𝐶))
5049fveq1d 6776 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑂)‘𝑥) = ((Id‘𝐶)‘𝑥))
5146, 50fveq12d 6781 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)))
524, 41oppcid 17432 . . . . . 6 (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷))
5317, 52simpl2im 504 . . . . 5 (𝜑 → (Id‘𝑃) = (Id‘𝐷))
5453adantr 481 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑃) = (Id‘𝐷))
5554fveq1d 6776 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑃)‘(𝐹𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
5644, 51, 553eqtr4d 2788 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((Id‘𝑃)‘(𝐹𝑥)))
57 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
58 eqid 2738 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
59133ad2ant1 1132 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹(𝐶 Func 𝐷)𝐺)
60 simp23 1207 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑧 ∈ (Base‘𝐶))
61 simp22 1206 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑦 ∈ (Base‘𝐶))
62 simp21 1205 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑥 ∈ (Base‘𝐶))
63 simp3r 1201 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
6427, 1oppchom 17425 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
6563, 64eleqtrdi 2849 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
66 simp3l 1200 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
6766, 35eleqtrdi 2849 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
682, 27, 57, 58, 59, 60, 61, 62, 65, 67funcco 17586 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
692, 57, 1, 62, 61, 60oppcco 17427 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
7069fveq2d 6778 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
71233ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
7271, 62ffvelrnd 6962 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑥) ∈ (Base‘𝐷))
7371, 61ffvelrnd 6962 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑦) ∈ (Base‘𝐷))
7471, 60ffvelrnd 6962 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑧) ∈ (Base‘𝐷))
755, 58, 4, 72, 73, 74oppcco 17427 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
7668, 70, 753eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)))
77 ovtpos 8057 . . . 4 (𝑥tpos 𝐺𝑧) = (𝑧𝐺𝑥)
7877fveq1i 6775 . . 3 ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
79 ovtpos 8057 . . . . 5 (𝑦tpos 𝐺𝑧) = (𝑧𝐺𝑦)
8079fveq1i 6775 . . . 4 ((𝑦tpos 𝐺𝑧)‘𝑔) = ((𝑧𝐺𝑦)‘𝑔)
8133fveq1i 6775 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑓) = ((𝑦𝐺𝑥)‘𝑓)
8280, 81oveq12i 7287 . . 3 (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓))
8376, 78, 823eqtr4g 2803 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)))
843, 6, 7, 8, 9, 10, 11, 12, 20, 22, 23, 26, 39, 56, 83isfuncd 17580 1 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  tpos ctpos 8041  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374  oppCatcoppc 17420   Func cfunc 17569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-oppc 17421  df-func 17573
This theorem is referenced by:  fulloppc  17638  fthoppc  17639  yonedalem1  17990  yonedalem21  17991  yonedalem22  17996
  Copyright terms: Public domain W3C validator