MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoppc Structured version   Visualization version   GIF version

Theorem funcoppc 16741
Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
funcoppc.o 𝑂 = (oppCat‘𝐶)
funcoppc.p 𝑃 = (oppCat‘𝐷)
funcoppc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
funcoppc (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)

Proof of Theorem funcoppc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcoppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 eqid 2771 . . 3 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 16584 . 2 (Base‘𝐶) = (Base‘𝑂)
4 funcoppc.p . . 3 𝑃 = (oppCat‘𝐷)
5 eqid 2771 . . 3 (Base‘𝐷) = (Base‘𝐷)
64, 5oppcbas 16584 . 2 (Base‘𝐷) = (Base‘𝑃)
7 eqid 2771 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
8 eqid 2771 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
9 eqid 2771 . 2 (Id‘𝑂) = (Id‘𝑂)
10 eqid 2771 . 2 (Id‘𝑃) = (Id‘𝑃)
11 eqid 2771 . 2 (comp‘𝑂) = (comp‘𝑂)
12 eqid 2771 . 2 (comp‘𝑃) = (comp‘𝑃)
13 funcoppc.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
14 df-br 4787 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylib 208 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
16 funcrcl 16729 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1715, 16syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1817simpld 476 . . 3 (𝜑𝐶 ∈ Cat)
191oppccat 16588 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2018, 19syl 17 . 2 (𝜑𝑂 ∈ Cat)
2117simprd 477 . . 3 (𝜑𝐷 ∈ Cat)
224oppccat 16588 . . 3 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
2321, 22syl 17 . 2 (𝜑𝑃 ∈ Cat)
242, 5, 13funcf1 16732 . 2 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
252, 13funcfn2 16735 . . 3 (𝜑𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
26 tposfn 7532 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
2725, 26syl 17 . 2 (𝜑 → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
28 eqid 2771 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
29 eqid 2771 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
3013adantr 466 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
31 simprr 748 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
32 simprl 746 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
332, 28, 29, 30, 31, 32funcf2 16734 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
34 ovtpos 7518 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
3534feq1i 6176 . . . 4 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
3628, 1oppchom 16581 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
3729, 4oppchom 16581 . . . . 5 ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥))
3836, 37feq23i 6179 . . . 4 ((𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3935, 38bitri 264 . . 3 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
4033, 39sylibr 224 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
41 eqid 2771 . . . 4 (Id‘𝐶) = (Id‘𝐶)
42 eqid 2771 . . . 4 (Id‘𝐷) = (Id‘𝐷)
4313adantr 466 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
44 simpr 471 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
452, 41, 42, 43, 44funcid 16736 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
46 ovtpos 7518 . . . . 5 (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥)
4746a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥))
481, 41oppcid 16587 . . . . . . 7 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
4918, 48syl 17 . . . . . 6 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
5049adantr 466 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑂) = (Id‘𝐶))
5150fveq1d 6334 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑂)‘𝑥) = ((Id‘𝐶)‘𝑥))
5247, 51fveq12d 6338 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)))
534, 42oppcid 16587 . . . . . 6 (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷))
5421, 53syl 17 . . . . 5 (𝜑 → (Id‘𝑃) = (Id‘𝐷))
5554adantr 466 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑃) = (Id‘𝐷))
5655fveq1d 6334 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑃)‘(𝐹𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
5745, 52, 563eqtr4d 2815 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((Id‘𝑃)‘(𝐹𝑥)))
58 eqid 2771 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
59 eqid 2771 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
60133ad2ant1 1127 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹(𝐶 Func 𝐷)𝐺)
61 simp23 1250 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑧 ∈ (Base‘𝐶))
62 simp22 1249 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑦 ∈ (Base‘𝐶))
63 simp21 1248 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑥 ∈ (Base‘𝐶))
64 simp3r 1244 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
6528, 1oppchom 16581 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
6664, 65syl6eleq 2860 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
67 simp3l 1243 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
6867, 36syl6eleq 2860 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
692, 28, 58, 59, 60, 61, 62, 63, 66, 68funcco 16737 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
702, 58, 1, 63, 62, 61oppcco 16583 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
7170fveq2d 6336 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
72243ad2ant1 1127 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
7372, 63ffvelrnd 6503 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑥) ∈ (Base‘𝐷))
7472, 62ffvelrnd 6503 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑦) ∈ (Base‘𝐷))
7572, 61ffvelrnd 6503 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑧) ∈ (Base‘𝐷))
765, 59, 4, 73, 74, 75oppcco 16583 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
7769, 71, 763eqtr4d 2815 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)))
78 ovtpos 7518 . . . 4 (𝑥tpos 𝐺𝑧) = (𝑧𝐺𝑥)
7978fveq1i 6333 . . 3 ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
80 ovtpos 7518 . . . . 5 (𝑦tpos 𝐺𝑧) = (𝑧𝐺𝑦)
8180fveq1i 6333 . . . 4 ((𝑦tpos 𝐺𝑧)‘𝑔) = ((𝑧𝐺𝑦)‘𝑔)
8234fveq1i 6333 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑓) = ((𝑦𝐺𝑥)‘𝑓)
8381, 82oveq12i 6804 . . 3 (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓))
8477, 79, 833eqtr4g 2830 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)))
853, 6, 7, 8, 9, 10, 11, 12, 20, 23, 24, 27, 40, 57, 84isfuncd 16731 1 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cop 4322   class class class wbr 4786   × cxp 5247   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792  tpos ctpos 7502  Basecbs 16063  Hom chom 16159  compcco 16160  Catccat 16531  Idccid 16532  oppCatcoppc 16577   Func cfunc 16720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-hom 16173  df-cco 16174  df-cat 16535  df-cid 16536  df-oppc 16578  df-func 16724
This theorem is referenced by:  fulloppc  16788  fthoppc  16789  yonedalem1  17119  yonedalem21  17120  yonedalem22  17125
  Copyright terms: Public domain W3C validator