MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoppc Structured version   Visualization version   GIF version

Theorem funcoppc 17837
Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
funcoppc.o 𝑂 = (oppCat‘𝐶)
funcoppc.p 𝑃 = (oppCat‘𝐷)
funcoppc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
funcoppc (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)

Proof of Theorem funcoppc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcoppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17679 . 2 (Base‘𝐶) = (Base‘𝑂)
4 funcoppc.p . . 3 𝑃 = (oppCat‘𝐷)
5 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
64, 5oppcbas 17679 . 2 (Base‘𝐷) = (Base‘𝑃)
7 eqid 2729 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
8 eqid 2729 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
9 eqid 2729 . 2 (Id‘𝑂) = (Id‘𝑂)
10 eqid 2729 . 2 (Id‘𝑃) = (Id‘𝑃)
11 eqid 2729 . 2 (comp‘𝑂) = (comp‘𝑂)
12 eqid 2729 . 2 (comp‘𝑃) = (comp‘𝑃)
13 funcoppc.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
14 df-br 5108 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
16 funcrcl 17825 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1715, 16syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1817simpld 494 . . 3 (𝜑𝐶 ∈ Cat)
191oppccat 17683 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2018, 19syl 17 . 2 (𝜑𝑂 ∈ Cat)
214oppccat 17683 . . 3 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
2217, 21simpl2im 503 . 2 (𝜑𝑃 ∈ Cat)
232, 5, 13funcf1 17828 . 2 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
242, 13funcfn2 17831 . . 3 (𝜑𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
25 tposfn 8234 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
2624, 25syl 17 . 2 (𝜑 → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
28 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
2913adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
30 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
31 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
322, 27, 28, 29, 30, 31funcf2 17830 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
33 ovtpos 8220 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
3433feq1i 6679 . . . 4 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
3527, 1oppchom 17676 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
3628, 4oppchom 17676 . . . . 5 ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥))
3735, 36feq23i 6682 . . . 4 ((𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3834, 37bitri 275 . . 3 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3932, 38sylibr 234 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
40 eqid 2729 . . . 4 (Id‘𝐶) = (Id‘𝐶)
41 eqid 2729 . . . 4 (Id‘𝐷) = (Id‘𝐷)
4213adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
43 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
442, 40, 41, 42, 43funcid 17832 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
45 ovtpos 8220 . . . . 5 (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥)
4645a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥))
471, 40oppcid 17682 . . . . . . 7 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
4818, 47syl 17 . . . . . 6 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
4948adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑂) = (Id‘𝐶))
5049fveq1d 6860 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑂)‘𝑥) = ((Id‘𝐶)‘𝑥))
5146, 50fveq12d 6865 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)))
524, 41oppcid 17682 . . . . . 6 (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷))
5317, 52simpl2im 503 . . . . 5 (𝜑 → (Id‘𝑃) = (Id‘𝐷))
5453adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑃) = (Id‘𝐷))
5554fveq1d 6860 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑃)‘(𝐹𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
5644, 51, 553eqtr4d 2774 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((Id‘𝑃)‘(𝐹𝑥)))
57 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
58 eqid 2729 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
59133ad2ant1 1133 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹(𝐶 Func 𝐷)𝐺)
60 simp23 1209 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑧 ∈ (Base‘𝐶))
61 simp22 1208 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑦 ∈ (Base‘𝐶))
62 simp21 1207 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑥 ∈ (Base‘𝐶))
63 simp3r 1203 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
6427, 1oppchom 17676 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
6563, 64eleqtrdi 2838 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
66 simp3l 1202 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
6766, 35eleqtrdi 2838 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
682, 27, 57, 58, 59, 60, 61, 62, 65, 67funcco 17833 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
692, 57, 1, 62, 61, 60oppcco 17678 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
7069fveq2d 6862 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
71233ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
7271, 62ffvelcdmd 7057 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑥) ∈ (Base‘𝐷))
7371, 61ffvelcdmd 7057 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑦) ∈ (Base‘𝐷))
7471, 60ffvelcdmd 7057 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑧) ∈ (Base‘𝐷))
755, 58, 4, 72, 73, 74oppcco 17678 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
7668, 70, 753eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)))
77 ovtpos 8220 . . . 4 (𝑥tpos 𝐺𝑧) = (𝑧𝐺𝑥)
7877fveq1i 6859 . . 3 ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
79 ovtpos 8220 . . . . 5 (𝑦tpos 𝐺𝑧) = (𝑧𝐺𝑦)
8079fveq1i 6859 . . . 4 ((𝑦tpos 𝐺𝑧)‘𝑔) = ((𝑧𝐺𝑦)‘𝑔)
8133fveq1i 6859 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑓) = ((𝑦𝐺𝑥)‘𝑓)
8280, 81oveq12i 7399 . . 3 (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓))
8376, 78, 823eqtr4g 2789 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)))
843, 6, 7, 8, 9, 10, 11, 12, 20, 22, 23, 26, 39, 56, 83isfuncd 17827 1 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107   × cxp 5636   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  tpos ctpos 8204  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  oppCatcoppc 17672   Func cfunc 17816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-oppc 17673  df-func 17820
This theorem is referenced by:  fulloppc  17886  fthoppc  17887  yonedalem1  18233  yonedalem21  18234  yonedalem22  18239  oppfoppc  49130  funcoppc2  49132  cofuoppf  49139  oppcup  49196  natoppf  49218
  Copyright terms: Public domain W3C validator