MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoppc Structured version   Visualization version   GIF version

Theorem funcoppc 17782
Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
funcoppc.o 𝑂 = (oppCat‘𝐶)
funcoppc.p 𝑃 = (oppCat‘𝐷)
funcoppc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
funcoppc (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)

Proof of Theorem funcoppc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcoppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17624 . 2 (Base‘𝐶) = (Base‘𝑂)
4 funcoppc.p . . 3 𝑃 = (oppCat‘𝐷)
5 eqid 2731 . . 3 (Base‘𝐷) = (Base‘𝐷)
64, 5oppcbas 17624 . 2 (Base‘𝐷) = (Base‘𝑃)
7 eqid 2731 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
8 eqid 2731 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
9 eqid 2731 . 2 (Id‘𝑂) = (Id‘𝑂)
10 eqid 2731 . 2 (Id‘𝑃) = (Id‘𝑃)
11 eqid 2731 . 2 (comp‘𝑂) = (comp‘𝑂)
12 eqid 2731 . 2 (comp‘𝑃) = (comp‘𝑃)
13 funcoppc.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
14 df-br 5090 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylib 218 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
16 funcrcl 17770 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1715, 16syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1817simpld 494 . . 3 (𝜑𝐶 ∈ Cat)
191oppccat 17628 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2018, 19syl 17 . 2 (𝜑𝑂 ∈ Cat)
214oppccat 17628 . . 3 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
2217, 21simpl2im 503 . 2 (𝜑𝑃 ∈ Cat)
232, 5, 13funcf1 17773 . 2 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
242, 13funcfn2 17776 . . 3 (𝜑𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
25 tposfn 8185 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
2624, 25syl 17 . 2 (𝜑 → tpos 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
28 eqid 2731 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
2913adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
30 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
31 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
322, 27, 28, 29, 30, 31funcf2 17775 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
33 ovtpos 8171 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
3433feq1i 6642 . . . 4 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
3527, 1oppchom 17621 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
3628, 4oppchom 17621 . . . . 5 ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥))
3735, 36feq23i 6645 . . . 4 ((𝑦𝐺𝑥):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3834, 37bitri 275 . . 3 ((𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) ↔ (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
3932, 38sylibr 234 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥tpos 𝐺𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
40 eqid 2731 . . . 4 (Id‘𝐶) = (Id‘𝐶)
41 eqid 2731 . . . 4 (Id‘𝐷) = (Id‘𝐷)
4213adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
43 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
442, 40, 41, 42, 43funcid 17777 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
45 ovtpos 8171 . . . . 5 (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥)
4645a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑥tpos 𝐺𝑥) = (𝑥𝐺𝑥))
471, 40oppcid 17627 . . . . . . 7 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
4818, 47syl 17 . . . . . 6 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
4948adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑂) = (Id‘𝐶))
5049fveq1d 6824 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑂)‘𝑥) = ((Id‘𝐶)‘𝑥))
5146, 50fveq12d 6829 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)))
524, 41oppcid 17627 . . . . . 6 (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷))
5317, 52simpl2im 503 . . . . 5 (𝜑 → (Id‘𝑃) = (Id‘𝐷))
5453adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝑃) = (Id‘𝐷))
5554fveq1d 6824 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑃)‘(𝐹𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)))
5644, 51, 553eqtr4d 2776 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥tpos 𝐺𝑥)‘((Id‘𝑂)‘𝑥)) = ((Id‘𝑃)‘(𝐹𝑥)))
57 eqid 2731 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
58 eqid 2731 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
59133ad2ant1 1133 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹(𝐶 Func 𝐷)𝐺)
60 simp23 1209 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑧 ∈ (Base‘𝐶))
61 simp22 1208 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑦 ∈ (Base‘𝐶))
62 simp21 1207 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑥 ∈ (Base‘𝐶))
63 simp3r 1203 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
6427, 1oppchom 17621 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
6563, 64eleqtrdi 2841 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
66 simp3l 1202 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
6766, 35eleqtrdi 2841 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
682, 27, 57, 58, 59, 60, 61, 62, 65, 67funcco 17778 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
692, 57, 1, 62, 61, 60oppcco 17623 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
7069fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
71233ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
7271, 62ffvelcdmd 7018 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑥) ∈ (Base‘𝐷))
7371, 61ffvelcdmd 7018 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑦) ∈ (Base‘𝐷))
7471, 60ffvelcdmd 7018 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (𝐹𝑧) ∈ (Base‘𝐷))
755, 58, 4, 72, 73, 74oppcco 17623 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)) = (((𝑦𝐺𝑥)‘𝑓)(⟨(𝐹𝑧), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑥))((𝑧𝐺𝑦)‘𝑔)))
7668, 70, 753eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓)))
77 ovtpos 8171 . . . 4 (𝑥tpos 𝐺𝑧) = (𝑧𝐺𝑥)
7877fveq1i 6823 . . 3 ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((𝑧𝐺𝑥)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
79 ovtpos 8171 . . . . 5 (𝑦tpos 𝐺𝑧) = (𝑧𝐺𝑦)
8079fveq1i 6823 . . . 4 ((𝑦tpos 𝐺𝑧)‘𝑔) = ((𝑧𝐺𝑦)‘𝑔)
8133fveq1i 6823 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑓) = ((𝑦𝐺𝑥)‘𝑓)
8280, 81oveq12i 7358 . . 3 (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)) = (((𝑧𝐺𝑦)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑦𝐺𝑥)‘𝑓))
8376, 78, 823eqtr4g 2791 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))) → ((𝑥tpos 𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = (((𝑦tpos 𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝑃)(𝐹𝑧))((𝑥tpos 𝐺𝑦)‘𝑓)))
843, 6, 7, 8, 9, 10, 11, 12, 20, 22, 23, 26, 39, 56, 83isfuncd 17772 1 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4579   class class class wbr 5089   × cxp 5612   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  tpos ctpos 8155  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  oppCatcoppc 17617   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-oppc 17618  df-func 17765
This theorem is referenced by:  fulloppc  17831  fthoppc  17832  yonedalem1  18178  yonedalem21  18179  yonedalem22  18184  oppfoppc  49252  funcoppc2  49254  cofuoppf  49261  oppcup  49318  natoppf  49340
  Copyright terms: Public domain W3C validator