Step | Hyp | Ref
| Expression |
1 | | isomushgr.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐴) |
2 | | isomushgr.w |
. . 3
⊢ 𝑊 = (Vtx‘𝐵) |
3 | | eqid 2825 |
. . 3
⊢
(iEdg‘𝐴) =
(iEdg‘𝐴) |
4 | | eqid 2825 |
. . 3
⊢
(iEdg‘𝐵) =
(iEdg‘𝐵) |
5 | 1, 2, 3, 4 | isomgr 42559 |
. 2
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))))) |
6 | | fvex 6450 |
. . . . . . . . . 10
⊢
(iEdg‘𝐵)
∈ V |
7 | | vex 3417 |
. . . . . . . . . . 11
⊢ ℎ ∈ V |
8 | | fvex 6450 |
. . . . . . . . . . . 12
⊢
(iEdg‘𝐴)
∈ V |
9 | 8 | cnvex 7380 |
. . . . . . . . . . 11
⊢ ◡(iEdg‘𝐴) ∈ V |
10 | 7, 9 | coex 7385 |
. . . . . . . . . 10
⊢ (ℎ ∘ ◡(iEdg‘𝐴)) ∈ V |
11 | 6, 10 | coex 7385 |
. . . . . . . . 9
⊢
((iEdg‘𝐵)
∘ (ℎ ∘ ◡(iEdg‘𝐴))) ∈ V |
12 | 11 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) ∈ V) |
13 | 2, 4 | ushgrf 26368 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1→(𝒫 𝑊 ∖ {∅})) |
14 | | f1f1orn 6393 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1→(𝒫 𝑊 ∖ {∅}) → (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵)) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→ran (iEdg‘𝐵)) |
16 | | isomushgr.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (Edg‘𝐵) |
17 | | edgval 26354 |
. . . . . . . . . . . . . 14
⊢
(Edg‘𝐵) = ran
(iEdg‘𝐵) |
18 | 16, 17 | eqtri 2849 |
. . . . . . . . . . . . 13
⊢ 𝐾 = ran (iEdg‘𝐵) |
19 | | f1oeq3 6373 |
. . . . . . . . . . . . 13
⊢ (𝐾 = ran (iEdg‘𝐵) → ((iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→𝐾 ↔ (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵))) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 ↔ (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵)) |
21 | 15, 20 | sylibr 226 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾) |
22 | 21 | ad3antlr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→𝐾) |
23 | | simprl 787 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
24 | 1, 3 | ushgrf 26368 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1→(𝒫 𝑉 ∖ {∅})) |
25 | | f1f1orn 6393 |
. . . . . . . . . . . . . . 15
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴)) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴)) |
27 | | isomushgr.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐴) |
28 | | edgval 26354 |
. . . . . . . . . . . . . . . 16
⊢
(Edg‘𝐴) = ran
(iEdg‘𝐴) |
29 | 27, 28 | eqtri 2849 |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = ran (iEdg‘𝐴) |
30 | | f1oeq3 6373 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 = ran (iEdg‘𝐴) → ((iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴))) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴)) |
32 | 26, 31 | sylibr 226 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸) |
33 | | f1ocnv 6394 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 → ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ USHGraph → ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) |
35 | 34 | ad3antrrr 721 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) |
36 | | f1oco 6404 |
. . . . . . . . . . 11
⊢ ((ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧ ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) →
(ℎ ∘ ◡(iEdg‘𝐴)):𝐸–1-1-onto→dom
(iEdg‘𝐵)) |
37 | 23, 35, 36 | syl2anc 579 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (ℎ ∘ ◡(iEdg‘𝐴)):𝐸–1-1-onto→dom
(iEdg‘𝐵)) |
38 | | f1oco 6404 |
. . . . . . . . . 10
⊢
(((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 ∧ (ℎ ∘ ◡(iEdg‘𝐴)):𝐸–1-1-onto→dom
(iEdg‘𝐵)) →
((iEdg‘𝐵) ∘
(ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾) |
39 | 22, 37, 38 | syl2anc 579 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾) |
40 | 29 | eleq2i 2898 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ran (iEdg‘𝐴)) |
41 | | f1fn 6343 |
. . . . . . . . . . . . . . 15
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐴) Fn dom (iEdg‘𝐴)) |
42 | 24, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴) Fn dom
(iEdg‘𝐴)) |
43 | | fvelrnb 6494 |
. . . . . . . . . . . . . 14
⊢
((iEdg‘𝐴) Fn
dom (iEdg‘𝐴) →
(𝑒 ∈ ran
(iEdg‘𝐴) ↔
∃𝑗 ∈ dom
(iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒)) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ USHGraph → (𝑒 ∈ ran (iEdg‘𝐴) ↔ ∃𝑗 ∈ dom (iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒)) |
45 | 44 | ad3antrrr 721 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑒 ∈ ran (iEdg‘𝐴) ↔ ∃𝑗 ∈ dom (iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒)) |
46 | | fveq2 6437 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐴)‘𝑖) = ((iEdg‘𝐴)‘𝑗)) |
47 | 46 | imaeq2d 5711 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
48 | | 2fveq3 6442 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐵)‘(ℎ‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
49 | 47, 48 | eqeq12d 2840 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗)))) |
50 | 49 | rspccv 3523 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗)))) |
51 | 50 | ad2antll 720 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗)))) |
52 | 51 | imp 397 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
53 | | coass 5899 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((iEdg‘𝐵)
∘ ℎ) ∘ ◡(iEdg‘𝐴)) = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) |
54 | 53 | eqcomi 2834 |
. . . . . . . . . . . . . . . . . . 19
⊢
((iEdg‘𝐵)
∘ (ℎ ∘ ◡(iEdg‘𝐴))) = (((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴)) |
55 | 54 | fveq1i 6438 |
. . . . . . . . . . . . . . . . . 18
⊢
(((iEdg‘𝐵)
∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗)) = ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) |
56 | | dff1o4 6390 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴) ↔ ((iEdg‘𝐴) Fn dom (iEdg‘𝐴) ∧ ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴))) |
57 | 26, 56 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ USHGraph →
((iEdg‘𝐴) Fn dom
(iEdg‘𝐴) ∧ ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴))) |
58 | 57 | simprd 491 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ USHGraph → ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴)) |
59 | 58 | ad4antr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴)) |
60 | | f1of 6382 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
61 | 26, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)⟶ran
(iEdg‘𝐴)) |
62 | 61 | ad3antrrr 721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
63 | 62 | ffvelrnda 6613 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑗) ∈ ran (iEdg‘𝐴)) |
64 | | fvco2 6524 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴) ∧ ((iEdg‘𝐴)‘𝑗) ∈ ran (iEdg‘𝐴)) → ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) = (((iEdg‘𝐵) ∘ ℎ)‘(◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)))) |
65 | 59, 63, 64 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) = (((iEdg‘𝐵) ∘ ℎ)‘(◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)))) |
66 | 32 | ad3antrrr 721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→𝐸) |
67 | | f1ocnvfv1 6792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)) = 𝑗) |
68 | 66, 67 | sylan 575 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)) = 𝑗) |
69 | 68 | fveq2d 6441 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ ℎ)‘(◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗))) = (((iEdg‘𝐵) ∘ ℎ)‘𝑗)) |
70 | | f1ofn 6383 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) → ℎ Fn dom (iEdg‘𝐴)) |
71 | 70 | ad2antrl 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ℎ Fn dom (iEdg‘𝐴)) |
72 | | fvco2 6524 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ Fn dom (iEdg‘𝐴) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ ℎ)‘𝑗) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
73 | 71, 72 | sylan 575 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ ℎ)‘𝑗) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
74 | 65, 69, 73 | 3eqtrd 2865 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
75 | 55, 74 | syl5req 2874 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐵)‘(ℎ‘𝑗)) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
76 | 75 | ad2antrr 717 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → ((iEdg‘𝐵)‘(ℎ‘𝑗)) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
77 | | imaeq2 5707 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑗) → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
78 | 77 | eqcoms 2833 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
79 | | simpr 479 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
80 | 78, 79 | sylan9eqr 2883 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → (𝑓 “ 𝑒) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
81 | | fveq2 6437 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑗) → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
82 | 81 | eqcoms 2833 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐴)‘𝑗) = 𝑒 → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
83 | 82 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
84 | 76, 80, 83 | 3eqtr4d 2871 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)) |
85 | 84 | ex 403 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) → (((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
86 | 52, 85 | mpdan 678 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
87 | 86 | rexlimdva 3240 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (∃𝑗 ∈ dom (iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
88 | 45, 87 | sylbid 232 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑒 ∈ ran (iEdg‘𝐴) → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
89 | 40, 88 | syl5bi 234 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑒 ∈ 𝐸 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
90 | 89 | ralrimiv 3174 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)) |
91 | 39, 90 | jca 507 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
92 | | f1oeq1 6371 |
. . . . . . . . 9
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → (𝑔:𝐸–1-1-onto→𝐾 ↔ ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾)) |
93 | | fveq1 6436 |
. . . . . . . . . . 11
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → (𝑔‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)) |
94 | 93 | eqeq2d 2835 |
. . . . . . . . . 10
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
95 | 94 | ralbidv 3195 |
. . . . . . . . 9
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → (∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
96 | 92, 95 | anbi12d 624 |
. . . . . . . 8
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)))) |
97 | 12, 91, 96 | elabd 3573 |
. . . . . . 7
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) |
98 | 97 | ex 403 |
. . . . . 6
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → ((ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
99 | 98 | exlimdv 2032 |
. . . . 5
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
100 | 6 | cnvex 7380 |
. . . . . . . . . 10
⊢ ◡(iEdg‘𝐵) ∈ V |
101 | | vex 3417 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
102 | 101, 8 | coex 7385 |
. . . . . . . . . 10
⊢ (𝑔 ∘ (iEdg‘𝐴)) ∈ V |
103 | 100, 102 | coex 7385 |
. . . . . . . . 9
⊢ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) ∈ V |
104 | 103 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) ∈ V) |
105 | 15 | ad3antlr 722 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵)) |
106 | | f1ocnv 6394 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→ran (iEdg‘𝐵) → ◡(iEdg‘𝐵):ran (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵)) |
107 | 105, 106 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ◡(iEdg‘𝐵):ran (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵)) |
108 | | f1oeq23 6374 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 = ran (iEdg‘𝐴) ∧ 𝐾 = ran (iEdg‘𝐵)) → (𝑔:𝐸–1-1-onto→𝐾 ↔ 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵))) |
109 | 29, 18, 108 | mp2an 683 |
. . . . . . . . . . . . 13
⊢ (𝑔:𝐸–1-1-onto→𝐾 ↔ 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
110 | 109 | biimpi 208 |
. . . . . . . . . . . 12
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
111 | 110 | ad2antrl 719 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
112 | 26 | ad3antrrr 721 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴)) |
113 | | f1oco 6404 |
. . . . . . . . . . 11
⊢ ((𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵) ∧
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴)) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
114 | 111, 112,
113 | syl2anc 579 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
115 | | f1oco 6404 |
. . . . . . . . . 10
⊢ ((◡(iEdg‘𝐵):ran (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵) ∧ (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) →
(◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
116 | 107, 114,
115 | syl2anc 579 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
117 | 61 | ad2antrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
118 | 117 | ffund 6286 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → Fun (iEdg‘𝐴)) |
119 | 118 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → Fun (iEdg‘𝐴)) |
120 | | fvelrn 6606 |
. . . . . . . . . . . 12
⊢ ((Fun
(iEdg‘𝐴) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) |
121 | 119, 120 | sylan 575 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) |
122 | 29 | raleqi 3354 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑒 ∈
𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
123 | 122 | biimpi 208 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑒 ∈
𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) → ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
124 | 123 | ad2antll 720 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
125 | 124 | adantr 474 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
126 | | imaeq2 5707 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑖) → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐴)‘𝑖))) |
127 | | fveq2 6437 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑖) → (𝑔‘𝑒) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
128 | 126, 127 | eqeq12d 2840 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑖) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖)))) |
129 | 128 | rspccva 3525 |
. . . . . . . . . . . . 13
⊢
((∀𝑒 ∈
ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
130 | 125, 129 | sylan 575 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
131 | | feq3 6265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸 = ran (iEdg‘𝐴) → ((iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴))) |
132 | 29, 131 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
133 | 61, 132 | sylibr 226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸) |
134 | 133 | ad2antrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
135 | | f1ofn 6383 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔 Fn 𝐸) |
136 | 135 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔 Fn 𝐸) |
137 | 134, 136 | anim12ci 607 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔 Fn 𝐸 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
138 | 137 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔 Fn 𝐸 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
139 | | fnfco 6310 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝐸 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) → (𝑔 ∘ (iEdg‘𝐴)) Fn dom (iEdg‘𝐴)) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔 ∘ (iEdg‘𝐴)) Fn dom (iEdg‘𝐴)) |
141 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → 𝑖 ∈ dom (iEdg‘𝐴)) |
142 | 141 | adantr 474 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → 𝑖 ∈ dom (iEdg‘𝐴)) |
143 | | fvco2 6524 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 ∘ (iEdg‘𝐴)) Fn dom (iEdg‘𝐴) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖))) |
144 | 140, 142,
143 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖))) |
145 | | f1of 6382 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 → (iEdg‘𝐵):dom (iEdg‘𝐵)⟶𝐾) |
146 | 21, 145 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)⟶𝐾) |
147 | 146 | ffund 6286 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ USHGraph → Fun
(iEdg‘𝐵)) |
148 | | funcocnv2 6406 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Fun
(iEdg‘𝐵) →
((iEdg‘𝐵) ∘
◡(iEdg‘𝐵)) = ( I ↾ ran (iEdg‘𝐵))) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ USHGraph →
((iEdg‘𝐵) ∘
◡(iEdg‘𝐵)) = ( I ↾ ran (iEdg‘𝐵))) |
150 | 149 | eqcomd 2831 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ USHGraph → ( I
↾ ran (iEdg‘𝐵))
= ((iEdg‘𝐵) ∘
◡(iEdg‘𝐵))) |
151 | 150 | ad5antlr 730 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ( I ↾ ran (iEdg‘𝐵)) = ((iEdg‘𝐵) ∘ ◡(iEdg‘𝐵))) |
152 | 151 | coeq1d 5520 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (( I ↾ ran (iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴))) = (((iEdg‘𝐵) ∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴)))) |
153 | 152 | fveq1d 6439 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = ((((iEdg‘𝐵) ∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)) |
154 | | coass 5899 |
. . . . . . . . . . . . . . 15
⊢
(((iEdg‘𝐵)
∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴))) = ((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))) |
155 | 154 | fveq1i 6438 |
. . . . . . . . . . . . . 14
⊢
((((iEdg‘𝐵)
∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖) = (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖) |
156 | 153, 155 | syl6eq 2877 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖)) |
157 | | f1of 6382 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:𝐸⟶𝐾) |
158 | | eqid 2825 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐸 = 𝐸 |
159 | 158, 18 | feq23i 6276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔:𝐸⟶𝐾 ↔ 𝑔:𝐸⟶ran (iEdg‘𝐵)) |
160 | 157, 159 | sylib 210 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:𝐸⟶ran (iEdg‘𝐵)) |
161 | 160 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐸⟶ran (iEdg‘𝐵)) |
162 | | f1of 6382 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
163 | 32, 162 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸) |
164 | 163 | ad2antrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
165 | | fco 6299 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:𝐸⟶ran (iEdg‘𝐵) ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵)) |
166 | 161, 164,
165 | syl2anr 590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵)) |
167 | 166 | anim1i 608 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵) ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
168 | 167 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵) ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
169 | | ffvelrn 6611 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) ∈ ran (iEdg‘𝐵)) |
170 | 168, 169 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) ∈ ran (iEdg‘𝐵)) |
171 | | fvresi 6696 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 ∘ (iEdg‘𝐴))‘𝑖) ∈ ran (iEdg‘𝐵) → (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) = ((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) |
172 | 170, 171 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) = ((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) |
173 | 163 | ad3antrrr 721 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
174 | 173 | anim1i 608 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸 ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
175 | 174 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸 ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
176 | | fvco3 6526 |
. . . . . . . . . . . . . . 15
⊢
(((iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸 ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
178 | 172, 177 | eqtrd 2861 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
179 | 144, 156,
178 | 3eqtr3rd 2870 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔‘((iEdg‘𝐴)‘𝑖)) = (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖)) |
180 | | dff1o4 6390 |
. . . . . . . . . . . . . . . . 17
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 ↔ ((iEdg‘𝐵) Fn dom (iEdg‘𝐵) ∧ ◡(iEdg‘𝐵) Fn 𝐾)) |
181 | 21, 180 | sylib 210 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ USHGraph →
((iEdg‘𝐵) Fn dom
(iEdg‘𝐵) ∧ ◡(iEdg‘𝐵) Fn 𝐾)) |
182 | 181 | simprd 491 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ USHGraph → ◡(iEdg‘𝐵) Fn 𝐾) |
183 | 182 | ad5antlr 730 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ◡(iEdg‘𝐵) Fn 𝐾) |
184 | 157 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐸⟶𝐾) |
185 | 134, 184 | anim12ci 607 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔:𝐸⟶𝐾 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
186 | 185 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔:𝐸⟶𝐾 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
187 | | fco 6299 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:𝐸⟶𝐾 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶𝐾) |
188 | 186, 187 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶𝐾) |
189 | | fnfco 6310 |
. . . . . . . . . . . . . 14
⊢ ((◡(iEdg‘𝐵) Fn 𝐾 ∧ (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶𝐾) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) Fn dom (iEdg‘𝐴)) |
190 | 183, 188,
189 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) Fn dom (iEdg‘𝐴)) |
191 | | fvco2 6524 |
. . . . . . . . . . . . 13
⊢ (((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) Fn dom (iEdg‘𝐴) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
192 | 190, 142,
191 | syl2anc 579 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
193 | 130, 179,
192 | 3eqtrd 2865 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
194 | 121, 193 | mpdan 678 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
195 | 194 | ralrimiva 3175 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
196 | 116, 195 | jca 507 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)))) |
197 | | f1oeq1 6371 |
. . . . . . . . 9
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ↔
(◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵))) |
198 | | fveq1 6436 |
. . . . . . . . . . . 12
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → (ℎ‘𝑖) = ((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)) |
199 | 198 | fveq2d 6441 |
. . . . . . . . . . 11
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → ((iEdg‘𝐵)‘(ℎ‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
200 | 199 | eqeq2d 2835 |
. . . . . . . . . 10
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)))) |
201 | 200 | ralbidv 3195 |
. . . . . . . . 9
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)))) |
202 | 197, 201 | anbi12d 624 |
. . . . . . . 8
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → ((ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) ↔ ((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))))) |
203 | 104, 196,
202 | elabd 3573 |
. . . . . . 7
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) |
204 | 203 | ex 403 |
. . . . . 6
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))))) |
205 | 204 | exlimdv 2032 |
. . . . 5
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))))) |
206 | 99, 205 | impbid 204 |
. . . 4
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) ↔ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
207 | 206 | pm5.32da 574 |
. . 3
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
208 | 207 | exbidv 2020 |
. 2
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) →
(∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
209 | 5, 208 | bitrd 271 |
1
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |