Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincdifsn Structured version   Visualization version   GIF version

Theorem lincdifsn 48380
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincdifsn.b 𝐵 = (Base‘𝑀)
lincdifsn.r 𝑅 = (Scalar‘𝑀)
lincdifsn.s 𝑆 = (Base‘𝑅)
lincdifsn.t · = ( ·𝑠𝑀)
lincdifsn.p + = (+g𝑀)
lincdifsn.0 0 = (0g𝑅)
Assertion
Ref Expression
lincdifsn (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))

Proof of Theorem lincdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ LMod)
2 lincdifsn.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincdifsn.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6884 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2759 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 7420 . . . . . . 7 (𝑆m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
76eleq2i 2827 . . . . . 6 (𝐹 ∈ (𝑆m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87biimpi 216 . . . . 5 (𝐹 ∈ (𝑆m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
98adantr 480 . . . 4 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
1093ad2ant2 1134 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
11 lincdifsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
1211pweqi 4596 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1312eleq2i 2827 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1413biimpi 216 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
15143ad2ant2 1134 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
17 lincval 48365 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
181, 10, 16, 17syl3anc 1373 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
19 lincdifsn.p . . . 4 + = (+g𝑀)
20 lmodcmn 20872 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
21203ad2ant1 1133 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ CMnd)
22213ad2ant1 1133 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ CMnd)
23 simp12 1205 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 𝐵)
2414anim2i 617 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
25243adant3 1132 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
26253ad2ant1 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
27 simp2l 1200 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ (𝑆m 𝑉))
28 lincdifsn.0 . . . . . . . . 9 0 = (0g𝑅)
2928breq2i 5132 . . . . . . . 8 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3029biimpi 216 . . . . . . 7 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3130adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp (0g𝑅))
32313ad2ant2 1134 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 finSupp (0g𝑅))
333, 2scmfsupp 48330 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
3426, 27, 32, 33syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
35 simpl1 1192 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
3635adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
37 elmapi 8868 . . . . . . . . . 10 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉𝑆)
38 ffvelcdm 7076 . . . . . . . . . . . 12 ((𝐹:𝑉𝑆𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
3938ex 412 . . . . . . . . . . 11 (𝐹:𝑉𝑆 → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4039a1d 25 . . . . . . . . . 10 (𝐹:𝑉𝑆 → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4137, 40syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆m 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4241adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4342impcom 407 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4443imp 406 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
45 elelpwi 4590 . . . . . . . . . 10 ((𝑥𝑉𝑉 ∈ 𝒫 𝐵) → 𝑥𝐵)
4645expcom 413 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑥𝑉𝑥𝐵))
47463ad2ant2 1134 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉𝑥𝐵))
4847adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉𝑥𝐵))
4948imp 406 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑥𝐵)
50 eqid 2736 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5111, 3, 50, 2lmodvscl 20840 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑥) ∈ 𝑆𝑥𝐵) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
5236, 44, 49, 51syl3anc 1373 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
53523adantl3 1169 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
54 simp13 1206 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑋𝑉)
55 ffvelcdm 7076 . . . . . . . . . . 11 ((𝐹:𝑉𝑆𝑋𝑉) → (𝐹𝑋) ∈ 𝑆)
5655expcom 413 . . . . . . . . . 10 (𝑋𝑉 → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
57563ad2ant3 1135 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
5837, 57syl5com 31 . . . . . . . 8 (𝐹 ∈ (𝑆m 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
5958adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
6059impcom 407 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑆)
61 elelpwi 4590 . . . . . . . . 9 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
6261ancoms 458 . . . . . . . 8 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
63623adant1 1130 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
6463adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑋𝐵)
65 lincdifsn.t . . . . . . 7 · = ( ·𝑠𝑀)
6611, 3, 65, 2lmodvscl 20840 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝑆𝑋𝐵) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6735, 60, 64, 66syl3anc 1373 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
68673adant3 1132 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6965eqcomi 2745 . . . . . . 7 ( ·𝑠𝑀) = ·
7069a1i 11 . . . . . 6 (𝑥 = 𝑋 → ( ·𝑠𝑀) = · )
71 fveq2 6881 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
72 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
7370, 71, 72oveq123d 7431 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7473adantl 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7511, 19, 22, 23, 34, 53, 54, 68, 74gsumdifsnd 19947 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
76 fveq1 6880 . . . . . . . . . 10 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
77763ad2ant3 1135 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
78 fvres 6900 . . . . . . . . 9 (𝑥 ∈ (𝑉 ∖ {𝑋}) → ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥) = (𝐹𝑥))
7977, 78sylan9eq 2791 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = (𝐹𝑥))
8079oveq1d 7425 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → ((𝐺𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑥)( ·𝑠𝑀)𝑥))
8180mpteq2dva 5219 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)))
8281eqcomd 2742 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)))
8382oveq2d 7426 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
8483oveq1d 7425 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
8575, 84eqtrd 2771 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
86 eqid 2736 . . . . . . . . . . . 12 𝑉 = 𝑉
8786, 5feq23i 6705 . . . . . . . . . . 11 (𝐹:𝑉𝑆𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8837, 87sylib 218 . . . . . . . . . 10 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8988adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
90893ad2ant2 1134 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
91 difssd 4117 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ⊆ 𝑉)
9290, 91fssresd 6750 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
93 feq1 6691 . . . . . . . 8 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
94933ad2ant3 1135 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
9592, 94mpbird 257 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
96 fvex 6894 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
97 difexg 5304 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ∈ V)
98973ad2ant2 1134 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ V)
99983ad2ant1 1133 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ V)
100 elmapg 8858 . . . . . . 7 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑉 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10196, 99, 100sylancr 587 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10295, 101mpbird 257 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})))
103 elpwi 4587 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
10411sseq2i 3993 . . . . . . . . . . . 12 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
105104biimpi 216 . . . . . . . . . . 11 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
106105ssdifssd 4127 . . . . . . . . . 10 (𝑉𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
107103, 106syl 17 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
108107adantl 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
10997adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ V)
110 elpwg 4583 . . . . . . . . 9 ((𝑉 ∖ {𝑋}) ∈ V → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
111109, 110syl 17 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
112108, 111mpbird 257 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131123adant3 1132 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1141133ad2ant1 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
115 lincval 48365 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ∧ (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
1161, 102, 114, 115syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
117116eqcomd 2742 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) = (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})))
118117oveq1d 7425 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
11918, 85, 1183eqtrd 2775 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  wss 3931  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  cmpt 5206  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845   finSupp cfsupp 9378  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766  LModclmod 20822   linC clinc 48360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-linc 48362
This theorem is referenced by:  lincext3  48412  lindslinindimp2lem4  48417  lincresunit3  48437
  Copyright terms: Public domain W3C validator