| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1203 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ LMod) |
| 2 | | lincdifsn.s |
. . . . . . . . 9
⊢ 𝑆 = (Base‘𝑅) |
| 3 | | lincdifsn.r |
. . . . . . . . . 10
⊢ 𝑅 = (Scalar‘𝑀) |
| 4 | 3 | fveq2i 6908 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
| 5 | 2, 4 | eqtri 2764 |
. . . . . . . 8
⊢ 𝑆 =
(Base‘(Scalar‘𝑀)) |
| 6 | 5 | oveq1i 7442 |
. . . . . . 7
⊢ (𝑆 ↑m 𝑉) =
((Base‘(Scalar‘𝑀)) ↑m 𝑉) |
| 7 | 6 | eleq2i 2832 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 ↑m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 8 | 7 | biimpi 216 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 ↑m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 10 | 9 | 3ad2ant2 1134 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 11 | | lincdifsn.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑀) |
| 12 | 11 | pweqi 4615 |
. . . . . . 7
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
| 13 | 12 | eleq2i 2832 |
. . . . . 6
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 14 | 13 | biimpi 216 |
. . . . 5
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 15 | 14 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 16 | 15 | 3ad2ant1 1133 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 17 | | lincval 48331 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 18 | 1, 10, 16, 17 | syl3anc 1372 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 19 | | lincdifsn.p |
. . . 4
⊢ + =
(+g‘𝑀) |
| 20 | | lmodcmn 20909 |
. . . . . 6
⊢ (𝑀 ∈ LMod → 𝑀 ∈ CMnd) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ CMnd) |
| 22 | 21 | 3ad2ant1 1133 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ CMnd) |
| 23 | | simp12 1204 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 𝐵) |
| 24 | 14 | anim2i 617 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 25 | 24 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 26 | 25 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 27 | | simp2l 1199 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ (𝑆 ↑m 𝑉)) |
| 28 | | lincdifsn.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
| 29 | 28 | breq2i 5150 |
. . . . . . . 8
⊢ (𝐹 finSupp 0 ↔ 𝐹 finSupp (0g‘𝑅)) |
| 30 | 29 | biimpi 216 |
. . . . . . 7
⊢ (𝐹 finSupp 0 → 𝐹 finSupp (0g‘𝑅)) |
| 31 | 30 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp (0g‘𝑅)) |
| 32 | 31 | 3ad2ant2 1134 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 finSupp (0g‘𝑅)) |
| 33 | 3, 2 | scmfsupp 48296 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧ 𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp (0g‘𝑅)) → (𝑥 ∈ 𝑉 ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥)) finSupp (0g‘𝑀)) |
| 34 | 26, 27, 32, 33 | syl3anc 1372 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ 𝑉 ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥)) finSupp (0g‘𝑀)) |
| 35 | | simpl1 1191 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod) |
| 36 | 35 | adantr 480 |
. . . . . 6
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥 ∈ 𝑉) → 𝑀 ∈ LMod) |
| 37 | | elmapi 8890 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 ↑m 𝑉) → 𝐹:𝑉⟶𝑆) |
| 38 | | ffvelcdm 7100 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑉⟶𝑆 ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) ∈ 𝑆) |
| 39 | 38 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐹:𝑉⟶𝑆 → (𝑥 ∈ 𝑉 → (𝐹‘𝑥) ∈ 𝑆)) |
| 40 | 39 | a1d 25 |
. . . . . . . . . 10
⊢ (𝐹:𝑉⟶𝑆 → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ 𝑉 → (𝐹‘𝑥) ∈ 𝑆))) |
| 41 | 37, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 ↑m 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ 𝑉 → (𝐹‘𝑥) ∈ 𝑆))) |
| 42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ 𝑉 → (𝐹‘𝑥) ∈ 𝑆))) |
| 43 | 42 | impcom 407 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥 ∈ 𝑉 → (𝐹‘𝑥) ∈ 𝑆)) |
| 44 | 43 | imp 406 |
. . . . . 6
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥 ∈ 𝑉) → (𝐹‘𝑥) ∈ 𝑆) |
| 45 | | elelpwi 4609 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑥 ∈ 𝐵) |
| 46 | 45 | expcom 413 |
. . . . . . . . 9
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝐵)) |
| 47 | 46 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝐵)) |
| 48 | 47 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝐵)) |
| 49 | 48 | imp 406 |
. . . . . 6
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝐵) |
| 50 | | eqid 2736 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 51 | 11, 3, 50, 2 | lmodvscl 20877 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑥) ∈ 𝑆 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ 𝐵) |
| 52 | 36, 44, 49, 51 | syl3anc 1372 |
. . . . 5
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ 𝐵) |
| 53 | 52 | 3adantl3 1168 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ 𝑉) → ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ 𝐵) |
| 54 | | simp13 1205 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑋 ∈ 𝑉) |
| 55 | | ffvelcdm 7100 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑉⟶𝑆 ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ 𝑆) |
| 56 | 55 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → (𝐹:𝑉⟶𝑆 → (𝐹‘𝑋) ∈ 𝑆)) |
| 57 | 56 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹:𝑉⟶𝑆 → (𝐹‘𝑋) ∈ 𝑆)) |
| 58 | 37, 57 | syl5com 31 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 ↑m 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ 𝑆)) |
| 59 | 58 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ 𝑆)) |
| 60 | 59 | impcom 407 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝑆) |
| 61 | | elelpwi 4609 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
| 62 | 61 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
| 63 | 62 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
| 64 | 63 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑋 ∈ 𝐵) |
| 65 | | lincdifsn.t |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑀) |
| 66 | 11, 3, 65, 2 | lmodvscl 20877 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑋) ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) · 𝑋) ∈ 𝐵) |
| 67 | 35, 60, 64, 66 | syl3anc 1372 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → ((𝐹‘𝑋) · 𝑋) ∈ 𝐵) |
| 68 | 67 | 3adant3 1132 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝐹‘𝑋) · 𝑋) ∈ 𝐵) |
| 69 | 65 | eqcomi 2745 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑀) = · |
| 70 | 69 | a1i 11 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (
·𝑠 ‘𝑀) = · ) |
| 71 | | fveq2 6905 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 72 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
| 73 | 70, 71, 72 | oveq123d 7453 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝐹‘𝑋) · 𝑋)) |
| 74 | 73 | adantl 481 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝐹‘𝑋) · 𝑋)) |
| 75 | 11, 19, 22, 23, 34, 53, 54, 68, 74 | gsumdifsnd 19980 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥))) + ((𝐹‘𝑋) · 𝑋))) |
| 76 | | fveq1 6904 |
. . . . . . . . . 10
⊢ (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺‘𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥)) |
| 77 | 76 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺‘𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥)) |
| 78 | | fvres 6924 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑉 ∖ {𝑋}) → ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥) = (𝐹‘𝑥)) |
| 79 | 77, 78 | sylan9eq 2796 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
| 80 | 79 | oveq1d 7447 |
. . . . . . 7
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥)) |
| 81 | 80 | mpteq2dva 5241 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 82 | 81 | eqcomd 2742 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 83 | 82 | oveq2d 7448 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 84 | 83 | oveq1d 7447 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥))) + ((𝐹‘𝑋) · 𝑋)) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥))) + ((𝐹‘𝑋) · 𝑋))) |
| 85 | 75, 84 | eqtrd 2776 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥))) + ((𝐹‘𝑋) · 𝑋))) |
| 86 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ 𝑉 = 𝑉 |
| 87 | 86, 5 | feq23i 6729 |
. . . . . . . . . . 11
⊢ (𝐹:𝑉⟶𝑆 ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
| 88 | 37, 87 | sylib 218 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 ↑m 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
| 89 | 88 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
| 90 | 89 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
| 91 | | difssd 4136 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ⊆ 𝑉) |
| 92 | 90, 91 | fssresd 6774 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))) |
| 93 | | feq1 6715 |
. . . . . . . 8
⊢ (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
| 94 | 93 | 3ad2ant3 1135 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
| 95 | 92, 94 | mpbird 257 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))) |
| 96 | | fvex 6918 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑀)) ∈ V |
| 97 | | difexg 5328 |
. . . . . . . . 9
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ∈ V) |
| 98 | 97 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑉 ∖ {𝑋}) ∈ V) |
| 99 | 98 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ V) |
| 100 | | elmapg 8880 |
. . . . . . 7
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑉 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
| 101 | 96, 99, 100 | sylancr 587 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
| 102 | 95, 101 | mpbird 257 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋}))) |
| 103 | | elpwi 4606 |
. . . . . . . . . 10
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵) |
| 104 | 11 | sseq2i 4012 |
. . . . . . . . . . . 12
⊢ (𝑉 ⊆ 𝐵 ↔ 𝑉 ⊆ (Base‘𝑀)) |
| 105 | 104 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑉 ⊆ 𝐵 → 𝑉 ⊆ (Base‘𝑀)) |
| 106 | 105 | ssdifssd 4146 |
. . . . . . . . . 10
⊢ (𝑉 ⊆ 𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
| 107 | 103, 106 | syl 17 |
. . . . . . . . 9
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
| 108 | 107 | adantl 481 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
| 109 | 97 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ V) |
| 110 | | elpwg 4602 |
. . . . . . . . 9
⊢ ((𝑉 ∖ {𝑋}) ∈ V → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))) |
| 111 | 109, 110 | syl 17 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))) |
| 112 | 108, 111 | mpbird 257 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 113 | 112 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 114 | 113 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 115 | | lincval 48331 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ∧ (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 116 | 1, 102, 114, 115 | syl3anc 1372 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 117 | 116 | eqcomd 2742 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋}))) |
| 118 | 117 | oveq1d 7447 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺‘𝑥)( ·𝑠
‘𝑀)𝑥))) + ((𝐹‘𝑋) · 𝑋)) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹‘𝑋) · 𝑋))) |
| 119 | 18, 85, 118 | 3eqtrd 2780 |
1
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹‘𝑋) · 𝑋))) |