| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6645 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: nvof1o 7221 axdc4uz 13909 isacs 17575 isfunc 17789 funcres 17821 funcpropd 17827 estrcco 18054 funcestrcsetclem9 18072 fullestrcsetc 18075 fullsetcestrc 18090 1stfcl 18121 2ndfcl 18122 evlfcl 18146 curf1cl 18152 yonedalem3b 18203 intopsn 18546 mgmhmpropd 18590 mhmpropd 18684 isghm 19112 pwssplit1 20981 islindf 21737 evls1sca 22226 rrxds 25309 wlkp1 29643 acunirnmpt 32616 fnpreimac 32628 pwrssmgc 32955 cnmbfm 34233 elmrsubrn 35495 poimirlem3 37605 poimirlem28 37630 isrngod 37880 rngosn3 37906 isgrpda 37937 islfld 39043 tendofset 40740 tendoset 40741 sn-isghm 42649 mapfzcons 42692 diophrw 42735 refsum2cnlem1 45018 funcringcsetcALTV2lem9 48286 funcringcsetclem9ALTV 48309 termcfuncval 49521 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |