| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6640 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: nvof1o 7214 axdc4uz 13891 isacs 17557 isfunc 17771 funcres 17803 funcpropd 17809 estrcco 18036 funcestrcsetclem9 18054 fullestrcsetc 18057 fullsetcestrc 18072 1stfcl 18103 2ndfcl 18104 evlfcl 18128 curf1cl 18134 yonedalem3b 18185 intopsn 18562 mgmhmpropd 18606 mhmpropd 18700 isghm 19128 pwssplit1 20994 islindf 21750 evls1sca 22239 rrxds 25321 wlkp1 29659 acunirnmpt 32639 fnpreimac 32651 pwrssmgc 32979 cnmbfm 34274 elmrsubrn 35562 poimirlem3 37669 poimirlem28 37694 isrngod 37944 rngosn3 37970 isgrpda 38001 islfld 39107 tendofset 40803 tendoset 40804 sn-isghm 42712 mapfzcons 42755 diophrw 42798 refsum2cnlem1 45080 funcringcsetcALTV2lem9 48335 funcringcsetclem9ALTV 48358 termcfuncval 49570 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |