![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6736 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: nvof1o 7316 axdc4uz 14035 isacs 17709 isfunc 17928 funcres 17960 funcpropd 17967 estrcco 18198 funcestrcsetclem9 18217 fullestrcsetc 18220 fullsetcestrc 18235 1stfcl 18266 2ndfcl 18267 evlfcl 18292 curf1cl 18298 yonedalem3b 18349 intopsn 18692 mgmhmpropd 18736 mhmpropd 18827 isghm 19255 pwssplit1 21081 islindf 21855 evls1sca 22348 rrxds 25446 wlkp1 29717 acunirnmpt 32677 fnpreimac 32689 pwrssmgc 32973 cnmbfm 34228 elmrsubrn 35488 poimirlem3 37583 poimirlem28 37608 isrngod 37858 rngosn3 37884 isgrpda 37915 islfld 39018 tendofset 40715 tendoset 40716 sn-isghm 42628 mapfzcons 42672 diophrw 42715 refsum2cnlem1 44937 funcringcsetcALTV2lem9 48021 funcringcsetclem9ALTV 48044 aacllem 48895 |
Copyright terms: Public domain | W3C validator |