| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6695 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: nvof1o 7273 axdc4uz 14002 isacs 17663 isfunc 17877 funcres 17909 funcpropd 17915 estrcco 18142 funcestrcsetclem9 18160 fullestrcsetc 18163 fullsetcestrc 18178 1stfcl 18209 2ndfcl 18210 evlfcl 18234 curf1cl 18240 yonedalem3b 18291 intopsn 18632 mgmhmpropd 18676 mhmpropd 18770 isghm 19198 pwssplit1 21017 islindf 21772 evls1sca 22261 rrxds 25345 wlkp1 29661 acunirnmpt 32637 fnpreimac 32649 pwrssmgc 32980 cnmbfm 34295 elmrsubrn 35542 poimirlem3 37647 poimirlem28 37672 isrngod 37922 rngosn3 37948 isgrpda 37979 islfld 39080 tendofset 40777 tendoset 40778 sn-isghm 42696 mapfzcons 42739 diophrw 42782 refsum2cnlem1 45061 funcringcsetcALTV2lem9 48273 funcringcsetclem9ALTV 48296 termcfuncval 49417 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |