Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6589 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: nvof1o 7152 axdc4uz 13704 isacs 17360 isfunc 17579 funcres 17611 funcpropd 17616 estrcco 17846 funcestrcsetclem9 17865 fullestrcsetc 17868 fullsetcestrc 17883 1stfcl 17914 2ndfcl 17915 evlfcl 17940 curf1cl 17946 yonedalem3b 17997 intopsn 18338 mhmpropd 18436 pwssplit1 20321 islindf 21019 evls1sca 21489 rrxds 24557 wlkp1 28049 acunirnmpt 30996 fnpreimac 31008 pwrssmgc 31278 cnmbfm 32230 elmrsubrn 33482 poimirlem3 35780 poimirlem28 35805 isrngod 36056 rngosn3 36082 isgrpda 36113 islfld 37076 tendofset 38772 tendoset 38773 mapfzcons 40538 diophrw 40581 refsum2cnlem1 42580 mgmhmpropd 45339 funcringcsetcALTV2lem9 45602 funcringcsetclem9ALTV 45625 aacllem 46505 |
Copyright terms: Public domain | W3C validator |