Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2759 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6491 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ⟶wf 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-fun 6341 df-fn 6342 df-f 6343 |
This theorem is referenced by: nvof1o 7034 axdc4uz 13406 isacs 16985 isfunc 17198 funcres 17230 funcpropd 17234 estrcco 17451 funcestrcsetclem9 17469 fullestrcsetc 17472 fullsetcestrc 17487 1stfcl 17518 2ndfcl 17519 evlfcl 17543 curf1cl 17549 yonedalem3b 17600 intopsn 17935 mhmpropd 18033 pwssplit1 19904 islindf 20582 evls1sca 21047 rrxds 24098 wlkp1 27575 acunirnmpt 30524 fnpreimac 30536 pwrssmgc 30808 cnmbfm 31753 elmrsubrn 33002 poimirlem3 35366 poimirlem28 35391 isrngod 35642 rngosn3 35668 isgrpda 35699 islfld 36664 tendofset 38360 tendoset 38361 mapfzcons 40058 diophrw 40101 refsum2cnlem1 42067 mgmhmpropd 44800 funcringcsetcALTV2lem9 45063 funcringcsetclem9ALTV 45086 aacllem 45793 |
Copyright terms: Public domain | W3C validator |