| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6677 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: nvof1o 7255 axdc4uz 13949 isacs 17612 isfunc 17826 funcres 17858 funcpropd 17864 estrcco 18091 funcestrcsetclem9 18109 fullestrcsetc 18112 fullsetcestrc 18127 1stfcl 18158 2ndfcl 18159 evlfcl 18183 curf1cl 18189 yonedalem3b 18240 intopsn 18581 mgmhmpropd 18625 mhmpropd 18719 isghm 19147 pwssplit1 20966 islindf 21721 evls1sca 22210 rrxds 25293 wlkp1 29609 acunirnmpt 32583 fnpreimac 32595 pwrssmgc 32926 cnmbfm 34254 elmrsubrn 35507 poimirlem3 37617 poimirlem28 37642 isrngod 37892 rngosn3 37918 isgrpda 37949 islfld 39055 tendofset 40752 tendoset 40753 sn-isghm 42661 mapfzcons 42704 diophrw 42747 refsum2cnlem1 45031 funcringcsetcALTV2lem9 48286 funcringcsetclem9ALTV 48309 termcfuncval 49521 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |