MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23d Structured version   Visualization version   GIF version

Theorem feq23d 6653
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
feq23d.1 (𝜑𝐴 = 𝐶)
feq23d.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
feq23d (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))

Proof of Theorem feq23d
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑𝐹 = 𝐹)
2 feq23d.1 . 2 (𝜑𝐴 = 𝐶)
3 feq23d.2 . 2 (𝜑𝐵 = 𝐷)
41, 2, 3feq123d 6647 1 (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wf 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6490  df-fn 6491  df-f 6492
This theorem is referenced by:  nvof1o  7222  axdc4uz  13895  isacs  17561  isfunc  17775  funcres  17807  funcpropd  17813  estrcco  18040  funcestrcsetclem9  18058  fullestrcsetc  18061  fullsetcestrc  18076  1stfcl  18107  2ndfcl  18108  evlfcl  18132  curf1cl  18138  yonedalem3b  18189  intopsn  18566  mgmhmpropd  18610  mhmpropd  18704  isghm  19131  pwssplit1  20997  islindf  21753  evls1sca  22241  rrxds  25323  wlkp1  29662  acunirnmpt  32645  fnpreimac  32657  pwrssmgc  32990  cnmbfm  34299  elmrsubrn  35587  poimirlem3  37686  poimirlem28  37711  isrngod  37961  rngosn3  37987  isgrpda  38018  islfld  39184  tendofset  40880  tendoset  40881  sn-isghm  42794  mapfzcons  42836  diophrw  42879  refsum2cnlem1  45161  funcringcsetcALTV2lem9  48425  funcringcsetclem9ALTV  48448  termcfuncval  49660  aacllem  49929
  Copyright terms: Public domain W3C validator