| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6680 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: nvof1o 7258 axdc4uz 13956 isacs 17619 isfunc 17833 funcres 17865 funcpropd 17871 estrcco 18098 funcestrcsetclem9 18116 fullestrcsetc 18119 fullsetcestrc 18134 1stfcl 18165 2ndfcl 18166 evlfcl 18190 curf1cl 18196 yonedalem3b 18247 intopsn 18588 mgmhmpropd 18632 mhmpropd 18726 isghm 19154 pwssplit1 20973 islindf 21728 evls1sca 22217 rrxds 25300 wlkp1 29616 acunirnmpt 32590 fnpreimac 32602 pwrssmgc 32933 cnmbfm 34261 elmrsubrn 35514 poimirlem3 37624 poimirlem28 37649 isrngod 37899 rngosn3 37925 isgrpda 37956 islfld 39062 tendofset 40759 tendoset 40760 sn-isghm 42668 mapfzcons 42711 diophrw 42754 refsum2cnlem1 45038 funcringcsetcALTV2lem9 48290 funcringcsetclem9ALTV 48313 termcfuncval 49525 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |