| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 6647 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6490 df-fn 6491 df-f 6492 |
| This theorem is referenced by: nvof1o 7222 axdc4uz 13895 isacs 17561 isfunc 17775 funcres 17807 funcpropd 17813 estrcco 18040 funcestrcsetclem9 18058 fullestrcsetc 18061 fullsetcestrc 18076 1stfcl 18107 2ndfcl 18108 evlfcl 18132 curf1cl 18138 yonedalem3b 18189 intopsn 18566 mgmhmpropd 18610 mhmpropd 18704 isghm 19131 pwssplit1 20997 islindf 21753 evls1sca 22241 rrxds 25323 wlkp1 29662 acunirnmpt 32645 fnpreimac 32657 pwrssmgc 32990 cnmbfm 34299 elmrsubrn 35587 poimirlem3 37686 poimirlem28 37711 isrngod 37961 rngosn3 37987 isgrpda 38018 islfld 39184 tendofset 40880 tendoset 40881 sn-isghm 42794 mapfzcons 42836 diophrw 42879 refsum2cnlem1 45161 funcringcsetcALTV2lem9 48425 funcringcsetclem9ALTV 48448 termcfuncval 49660 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |