MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23d Structured version   Visualization version   GIF version

Theorem feq23d 6579
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
feq23d.1 (𝜑𝐴 = 𝐶)
feq23d.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
feq23d (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))

Proof of Theorem feq23d
StepHypRef Expression
1 eqidd 2739 . 2 (𝜑𝐹 = 𝐹)
2 feq23d.1 . 2 (𝜑𝐴 = 𝐶)
3 feq23d.2 . 2 (𝜑𝐵 = 𝐷)
41, 2, 3feq123d 6573 1 (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  nvof1o  7133  axdc4uz  13632  isacs  17277  isfunc  17495  funcres  17527  funcpropd  17532  estrcco  17762  funcestrcsetclem9  17781  fullestrcsetc  17784  fullsetcestrc  17799  1stfcl  17830  2ndfcl  17831  evlfcl  17856  curf1cl  17862  yonedalem3b  17913  intopsn  18253  mhmpropd  18351  pwssplit1  20236  islindf  20929  evls1sca  21399  rrxds  24462  wlkp1  27951  acunirnmpt  30898  fnpreimac  30910  pwrssmgc  31180  cnmbfm  32130  elmrsubrn  33382  poimirlem3  35707  poimirlem28  35732  isrngod  35983  rngosn3  36009  isgrpda  36040  islfld  37003  tendofset  38699  tendoset  38700  mapfzcons  40454  diophrw  40497  refsum2cnlem1  42469  mgmhmpropd  45227  funcringcsetcALTV2lem9  45490  funcringcsetclem9ALTV  45513  aacllem  46391
  Copyright terms: Public domain W3C validator