Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6573 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: nvof1o 7133 axdc4uz 13632 isacs 17277 isfunc 17495 funcres 17527 funcpropd 17532 estrcco 17762 funcestrcsetclem9 17781 fullestrcsetc 17784 fullsetcestrc 17799 1stfcl 17830 2ndfcl 17831 evlfcl 17856 curf1cl 17862 yonedalem3b 17913 intopsn 18253 mhmpropd 18351 pwssplit1 20236 islindf 20929 evls1sca 21399 rrxds 24462 wlkp1 27951 acunirnmpt 30898 fnpreimac 30910 pwrssmgc 31180 cnmbfm 32130 elmrsubrn 33382 poimirlem3 35707 poimirlem28 35732 isrngod 35983 rngosn3 36009 isgrpda 36040 islfld 37003 tendofset 38699 tendoset 38700 mapfzcons 40454 diophrw 40497 refsum2cnlem1 42469 mgmhmpropd 45227 funcringcsetcALTV2lem9 45490 funcringcsetclem9ALTV 45513 aacllem 46391 |
Copyright terms: Public domain | W3C validator |