MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfval Structured version   Visualization version   GIF version

Theorem cnextfval 22667
Description: The continuous extension of a given function 𝐹. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Hypotheses
Ref Expression
cnextfval.1 𝑋 = 𝐽
cnextfval.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfval (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem cnextfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnextval 22666 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
21adantr 484 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
3 simpr 488 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
43dmeqd 5738 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
5 simplrl 776 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝐹:𝐴𝐵)
65fdmd 6497 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
74, 6eqtrd 2833 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
87fveq2d 6649 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ((cls‘𝐽)‘dom 𝑓) = ((cls‘𝐽)‘𝐴))
97oveq2d 7151 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
109oveq2d 7151 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)))
1110, 3fveq12d 6652 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1211xpeq2d 5549 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
138, 12iuneq12d 4909 . 2 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
14 uniexg 7446 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
1514ad2antlr 726 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐾 ∈ V)
16 uniexg 7446 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
1716ad2antrr 725 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐽 ∈ V)
18 eqid 2798 . . . . . 6 𝐴 = 𝐴
19 cnextfval.2 . . . . . 6 𝐵 = 𝐾
2018, 19feq23i 6481 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴 𝐾)
2120biimpi 219 . . . 4 (𝐹:𝐴𝐵𝐹:𝐴 𝐾)
2221ad2antrl 727 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐹:𝐴 𝐾)
23 cnextfval.1 . . . . . 6 𝑋 = 𝐽
2423sseq2i 3944 . . . . 5 (𝐴𝑋𝐴 𝐽)
2524biimpi 219 . . . 4 (𝐴𝑋𝐴 𝐽)
2625ad2antll 728 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐴 𝐽)
27 elpm2r 8407 . . 3 ((( 𝐾 ∈ V ∧ 𝐽 ∈ V) ∧ (𝐹:𝐴 𝐾𝐴 𝐽)) → 𝐹 ∈ ( 𝐾pm 𝐽))
2815, 17, 22, 26, 27syl22anc 837 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐹 ∈ ( 𝐾pm 𝐽))
29 fvex 6658 . . . 4 ((cls‘𝐽)‘𝐴) ∈ V
30 snex 5297 . . . . 5 {𝑥} ∈ V
31 fvex 6658 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ V
3230, 31xpex 7456 . . . 4 ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V
3329, 32iunex 7651 . . 3 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V
3433a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V)
352, 13, 28, 34fvmptd 6752 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  {csn 4525   cuni 4800   ciun 4881  cmpt 5110   × cxp 5517  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  t crest 16686  Topctop 21498  clsccl 21623  neicnei 21702   fLimf cflf 22540  CnExtccnext 22664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-pm 8392  df-cnext 22665
This theorem is referenced by:  cnextrel  22668  cnextfun  22669  cnextfvval  22670  cnextf  22671  cnextfres  22674
  Copyright terms: Public domain W3C validator