MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfval Structured version   Visualization version   GIF version

Theorem cnextfval 23949
Description: The continuous extension of a given function 𝐹. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Hypotheses
Ref Expression
cnextfval.1 𝑋 = 𝐽
cnextfval.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfval (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem cnextfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnextval 23948 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
21adantr 480 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
3 simpr 484 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
43dmeqd 5869 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
5 simplrl 776 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝐹:𝐴𝐵)
65fdmd 6698 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
74, 6eqtrd 2764 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
87fveq2d 6862 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ((cls‘𝐽)‘dom 𝑓) = ((cls‘𝐽)‘𝐴))
97oveq2d 7403 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
109oveq2d 7403 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)))
1110, 3fveq12d 6865 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1211xpeq2d 5668 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
138, 12iuneq12d 4985 . 2 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
14 uniexg 7716 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
1514ad2antlr 727 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐾 ∈ V)
16 uniexg 7716 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
1716ad2antrr 726 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐽 ∈ V)
18 eqid 2729 . . . . . 6 𝐴 = 𝐴
19 cnextfval.2 . . . . . 6 𝐵 = 𝐾
2018, 19feq23i 6682 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴 𝐾)
2120biimpi 216 . . . 4 (𝐹:𝐴𝐵𝐹:𝐴 𝐾)
2221ad2antrl 728 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐹:𝐴 𝐾)
23 cnextfval.1 . . . . . 6 𝑋 = 𝐽
2423sseq2i 3976 . . . . 5 (𝐴𝑋𝐴 𝐽)
2524biimpi 216 . . . 4 (𝐴𝑋𝐴 𝐽)
2625ad2antll 729 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐴 𝐽)
27 elpm2r 8818 . . 3 ((( 𝐾 ∈ V ∧ 𝐽 ∈ V) ∧ (𝐹:𝐴 𝐾𝐴 𝐽)) → 𝐹 ∈ ( 𝐾pm 𝐽))
2815, 17, 22, 26, 27syl22anc 838 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐹 ∈ ( 𝐾pm 𝐽))
29 fvex 6871 . . . 4 ((cls‘𝐽)‘𝐴) ∈ V
30 vsnex 5389 . . . . 5 {𝑥} ∈ V
31 fvex 6871 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ V
3230, 31xpex 7729 . . . 4 ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V
3329, 32iunex 7947 . . 3 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V
3433a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V)
352, 13, 28, 34fvmptd 6975 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589   cuni 4871   ciun 4955  cmpt 5188   × cxp 5636  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  pm cpm 8800  t crest 17383  Topctop 22780  clsccl 22905  neicnei 22984   fLimf cflf 23822  CnExtccnext 23946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-cnext 23947
This theorem is referenced by:  cnextrel  23950  cnextfun  23951  cnextfvval  23952  cnextf  23953  cnextfres  23956
  Copyright terms: Public domain W3C validator