Step | Hyp | Ref
| Expression |
1 | | cnextval 23120 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ (∪ 𝐾 ↑pm ∪ 𝐽)
↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
2 | 1 | adantr 480 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → (𝐽CnExt𝐾) = (𝑓 ∈ (∪ 𝐾 ↑pm ∪ 𝐽)
↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
3 | | simpr 484 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
4 | 3 | dmeqd 5803 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹) |
5 | | simplrl 773 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → 𝐹:𝐴⟶𝐵) |
6 | 5 | fdmd 6595 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴) |
7 | 4, 6 | eqtrd 2778 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴) |
8 | 7 | fveq2d 6760 |
. . 3
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → ((cls‘𝐽)‘dom 𝑓) = ((cls‘𝐽)‘𝐴)) |
9 | 7 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) |
10 | 9 | oveq2d 7271 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))) |
11 | 10, 3 | fveq12d 6763 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
12 | 11 | xpeq2d 5610 |
. . 3
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
13 | 8, 12 | iuneq12d 4949 |
. 2
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) ∧ 𝑓 = 𝐹) → ∪
𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
14 | | uniexg 7571 |
. . . 4
⊢ (𝐾 ∈ Top → ∪ 𝐾
∈ V) |
15 | 14 | ad2antlr 723 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → ∪ 𝐾 ∈ V) |
16 | | uniexg 7571 |
. . . 4
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) |
17 | 16 | ad2antrr 722 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → ∪ 𝐽 ∈ V) |
18 | | eqid 2738 |
. . . . . 6
⊢ 𝐴 = 𝐴 |
19 | | cnextfval.2 |
. . . . . 6
⊢ 𝐵 = ∪
𝐾 |
20 | 18, 19 | feq23i 6578 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∪ 𝐾) |
21 | 20 | biimpi 215 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶∪ 𝐾) |
22 | 21 | ad2antrl 724 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → 𝐹:𝐴⟶∪ 𝐾) |
23 | | cnextfval.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
24 | 23 | sseq2i 3946 |
. . . . 5
⊢ (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝐽) |
25 | 24 | biimpi 215 |
. . . 4
⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ ∪ 𝐽) |
26 | 25 | ad2antll 725 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → 𝐴 ⊆ ∪ 𝐽) |
27 | | elpm2r 8591 |
. . 3
⊢ (((∪ 𝐾
∈ V ∧ ∪ 𝐽 ∈ V) ∧ (𝐹:𝐴⟶∪ 𝐾 ∧ 𝐴 ⊆ ∪ 𝐽)) → 𝐹 ∈ (∪ 𝐾 ↑pm ∪ 𝐽)) |
28 | 15, 17, 22, 26, 27 | syl22anc 835 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → 𝐹 ∈ (∪ 𝐾 ↑pm ∪ 𝐽)) |
29 | | fvex 6769 |
. . . 4
⊢
((cls‘𝐽)‘𝐴) ∈ V |
30 | | snex 5349 |
. . . . 5
⊢ {𝑥} ∈ V |
31 | | fvex 6769 |
. . . . 5
⊢ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ V |
32 | 30, 31 | xpex 7581 |
. . . 4
⊢ ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V |
33 | 29, 32 | iunex 7784 |
. . 3
⊢ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V |
34 | 33 | a1i 11 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V) |
35 | 2, 13, 28, 34 | fvmptd 6864 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |