MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfval Structured version   Visualization version   GIF version

Theorem cnextfval 23970
Description: The continuous extension of a given function 𝐹. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Hypotheses
Ref Expression
cnextfval.1 𝑋 = 𝐽
cnextfval.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfval (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem cnextfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnextval 23969 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
21adantr 480 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
3 simpr 484 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
43dmeqd 5843 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
5 simplrl 776 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝐹:𝐴𝐵)
65fdmd 6657 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝐹 = 𝐴)
74, 6eqtrd 2765 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
87fveq2d 6821 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ((cls‘𝐽)‘dom 𝑓) = ((cls‘𝐽)‘𝐴))
97oveq2d 7357 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
109oveq2d 7357 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)))
1110, 3fveq12d 6824 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1211xpeq2d 5644 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
138, 12iuneq12d 4969 . 2 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) ∧ 𝑓 = 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
14 uniexg 7668 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
1514ad2antlr 727 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐾 ∈ V)
16 uniexg 7668 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
1716ad2antrr 726 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐽 ∈ V)
18 eqid 2730 . . . . . 6 𝐴 = 𝐴
19 cnextfval.2 . . . . . 6 𝐵 = 𝐾
2018, 19feq23i 6641 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴 𝐾)
2120biimpi 216 . . . 4 (𝐹:𝐴𝐵𝐹:𝐴 𝐾)
2221ad2antrl 728 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐹:𝐴 𝐾)
23 cnextfval.1 . . . . . 6 𝑋 = 𝐽
2423sseq2i 3962 . . . . 5 (𝐴𝑋𝐴 𝐽)
2524biimpi 216 . . . 4 (𝐴𝑋𝐴 𝐽)
2625ad2antll 729 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐴 𝐽)
27 elpm2r 8764 . . 3 ((( 𝐾 ∈ V ∧ 𝐽 ∈ V) ∧ (𝐹:𝐴 𝐾𝐴 𝐽)) → 𝐹 ∈ ( 𝐾pm 𝐽))
2815, 17, 22, 26, 27syl22anc 838 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝐹 ∈ ( 𝐾pm 𝐽))
29 fvex 6830 . . . 4 ((cls‘𝐽)‘𝐴) ∈ V
30 vsnex 5370 . . . . 5 {𝑥} ∈ V
31 fvex 6830 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ V
3230, 31xpex 7681 . . . 4 ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V
3329, 32iunex 7895 . . 3 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V
3433a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ∈ V)
352, 13, 28, 34fvmptd 6931 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  wss 3900  {csn 4574   cuni 4857   ciun 4939  cmpt 5170   × cxp 5612  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  pm cpm 8746  t crest 17316  Topctop 22801  clsccl 22926  neicnei 23005   fLimf cflf 23843  CnExtccnext 23967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-pm 8748  df-cnext 23968
This theorem is referenced by:  cnextrel  23971  cnextfun  23972  cnextfvval  23973  cnextf  23974  cnextfres  23977
  Copyright terms: Public domain W3C validator