MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2 Structured version   Visualization version   GIF version

Theorem fin1a2 9439
Description: Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2 (𝐴 ∈ FinIa𝐴 ∈ FinII)

Proof of Theorem fin1a2
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4307 . . . 4 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
2 fin1ai 9317 . . . . 5 ((𝐴 ∈ FinIa𝑏𝐴) → (𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ Fin))
3 fin12 9437 . . . . . 6 ((𝐴𝑏) ∈ Fin → (𝐴𝑏) ∈ FinII)
43orim2i 894 . . . . 5 ((𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ Fin) → (𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ FinII))
52, 4syl 17 . . . 4 ((𝐴 ∈ FinIa𝑏𝐴) → (𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ FinII))
61, 5sylan2 580 . . 3 ((𝐴 ∈ FinIa𝑏 ∈ 𝒫 𝐴) → (𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ FinII))
76ralrimiva 3115 . 2 (𝐴 ∈ FinIa → ∀𝑏 ∈ 𝒫 𝐴(𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ FinII))
8 fin1a2s 9438 . 2 ((𝐴 ∈ FinIa ∧ ∀𝑏 ∈ 𝒫 𝐴(𝑏 ∈ Fin ∨ (𝐴𝑏) ∈ FinII)) → 𝐴 ∈ FinII)
97, 8mpdan 667 1 (𝐴 ∈ FinIa𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 834  wcel 2145  wral 3061  cdif 3720  wss 3723  𝒫 cpw 4297  Fincfn 8109  FinIacfin1a 9302  FinIIcfin2 9303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-rpss 7084  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-seqom 7696  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-wdom 8620  df-card 8965  df-fin1a 9309  df-fin2 9310  df-fin4 9311  df-fin3 9312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator