| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2 | Structured version Visualization version GIF version | ||
| Description: Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin1a2 | ⊢ (𝐴 ∈ FinIa → 𝐴 ∈ FinII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4558 | . . . 4 ⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) | |
| 2 | fin1ai 10193 | . . . . 5 ⊢ ((𝐴 ∈ FinIa ∧ 𝑏 ⊆ 𝐴) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ Fin)) | |
| 3 | fin12 10313 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑏) ∈ Fin → (𝐴 ∖ 𝑏) ∈ FinII) | |
| 4 | 3 | orim2i 910 | . . . . 5 ⊢ ((𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ Fin) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ FinIa ∧ 𝑏 ⊆ 𝐴) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 6 | 1, 5 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ FinIa ∧ 𝑏 ∈ 𝒫 𝐴) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 7 | 6 | ralrimiva 3125 | . 2 ⊢ (𝐴 ∈ FinIa → ∀𝑏 ∈ 𝒫 𝐴(𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 8 | fin1a2s 10314 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ ∀𝑏 ∈ 𝒫 𝐴(𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) → 𝐴 ∈ FinII) | |
| 9 | 7, 8 | mpdan 687 | 1 ⊢ (𝐴 ∈ FinIa → 𝐴 ∈ FinII) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 ⊆ wss 3898 𝒫 cpw 4551 Fincfn 8877 FinIacfin1a 10178 FinIIcfin2 10179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-rpss 7664 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-seqom 8375 df-1o 8393 df-2o 8394 df-oadd 8397 df-omul 8398 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-wdom 9460 df-card 9841 df-fin1a 10185 df-fin2 10186 df-fin4 10187 df-fin3 10188 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |