| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2 | Structured version Visualization version GIF version | ||
| Description: Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin1a2 | ⊢ (𝐴 ∈ FinIa → 𝐴 ∈ FinII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4582 | . . . 4 ⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) | |
| 2 | fin1ai 10305 | . . . . 5 ⊢ ((𝐴 ∈ FinIa ∧ 𝑏 ⊆ 𝐴) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ Fin)) | |
| 3 | fin12 10425 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑏) ∈ Fin → (𝐴 ∖ 𝑏) ∈ FinII) | |
| 4 | 3 | orim2i 910 | . . . . 5 ⊢ ((𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ Fin) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ FinIa ∧ 𝑏 ⊆ 𝐴) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 6 | 1, 5 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ FinIa ∧ 𝑏 ∈ 𝒫 𝐴) → (𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 7 | 6 | ralrimiva 3132 | . 2 ⊢ (𝐴 ∈ FinIa → ∀𝑏 ∈ 𝒫 𝐴(𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) |
| 8 | fin1a2s 10426 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ ∀𝑏 ∈ 𝒫 𝐴(𝑏 ∈ Fin ∨ (𝐴 ∖ 𝑏) ∈ FinII)) → 𝐴 ∈ FinII) | |
| 9 | 7, 8 | mpdan 687 | 1 ⊢ (𝐴 ∈ FinIa → 𝐴 ∈ FinII) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 Fincfn 8957 FinIacfin1a 10290 FinIIcfin2 10291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-rpss 7715 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-seqom 8460 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-wdom 9577 df-card 9951 df-fin1a 10297 df-fin2 10298 df-fin4 10299 df-fin3 10300 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |