| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssdmd | Structured version Visualization version GIF version | ||
| Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
| 2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6666 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 4 | 1, 3 | sseqtrd 3974 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 dom cdm 5623 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-fn 6489 df-f 6490 |
| This theorem is referenced by: ordtypelem7 9435 vdwlem11 16921 gsumzoppg 19841 taylfvallem1 26280 taylply2 26291 taylply2OLD 26292 taylply 26293 dvtaylp 26294 dvntaylp0 26296 taylthlem1 26297 taylthlem2 26298 taylthlem2OLD 26299 tocyccntz 33099 omssubadd 34270 |
| Copyright terms: Public domain | W3C validator |