![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssdmd | Structured version Visualization version GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
Ref | Expression |
---|---|
fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6757 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrd 4049 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 dom cdm 5700 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-fn 6576 df-f 6577 |
This theorem is referenced by: ordtypelem7 9593 vdwlem11 17038 gsumzoppg 19986 taylfvallem1 26416 taylply2 26427 taylply2OLD 26428 taylply 26429 dvtaylp 26430 dvntaylp0 26432 taylthlem1 26433 taylthlem2 26434 taylthlem2OLD 26435 tocyccntz 33137 omssubadd 34265 |
Copyright terms: Public domain | W3C validator |