MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssdmd Structured version   Visualization version   GIF version

Theorem fssdmd 6677
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f (𝜑𝐹:𝐴𝐵)
fssdmd.d (𝜑𝐷 ⊆ dom 𝐹)
Assertion
Ref Expression
fssdmd (𝜑𝐷𝐴)

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2 (𝜑𝐷 ⊆ dom 𝐹)
2 fssdmd.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 6669 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrd 3967 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3898  dom cdm 5621  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-ss 3915  df-fn 6492  df-f 6493
This theorem is referenced by:  ordtypelem7  9421  vdwlem11  16910  gsumzoppg  19864  taylfvallem1  26311  taylply2  26322  taylply2OLD  26323  taylply  26324  dvtaylp  26325  dvntaylp0  26327  taylthlem1  26328  taylthlem2  26329  taylthlem2OLD  26330  tocyccntz  33154  omssubadd  34385
  Copyright terms: Public domain W3C validator