| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssdmd | Structured version Visualization version GIF version | ||
| Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
| 2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6726 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 4 | 1, 3 | sseqtrd 4000 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3931 dom cdm 5665 ⟶wf 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ss 3948 df-fn 6544 df-f 6545 |
| This theorem is referenced by: ordtypelem7 9546 vdwlem11 17011 gsumzoppg 19930 taylfvallem1 26334 taylply2 26345 taylply2OLD 26346 taylply 26347 dvtaylp 26348 dvntaylp0 26350 taylthlem1 26351 taylthlem2 26352 taylthlem2OLD 26353 tocyccntz 33103 omssubadd 34261 |
| Copyright terms: Public domain | W3C validator |