MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssdmd Structured version   Visualization version   GIF version

Theorem fssdmd 6734
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f (𝜑𝐹:𝐴𝐵)
fssdmd.d (𝜑𝐷 ⊆ dom 𝐹)
Assertion
Ref Expression
fssdmd (𝜑𝐷𝐴)

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2 (𝜑𝐷 ⊆ dom 𝐹)
2 fssdmd.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 6726 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrd 4000 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3931  dom cdm 5665  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2726  df-ss 3948  df-fn 6544  df-f 6545
This theorem is referenced by:  ordtypelem7  9546  vdwlem11  17011  gsumzoppg  19930  taylfvallem1  26334  taylply2  26345  taylply2OLD  26346  taylply  26347  dvtaylp  26348  dvntaylp0  26350  taylthlem1  26351  taylthlem2  26352  taylthlem2OLD  26353  tocyccntz  33103  omssubadd  34261
  Copyright terms: Public domain W3C validator