MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssdmd Structured version   Visualization version   GIF version

Theorem fssdmd 6754
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f (𝜑𝐹:𝐴𝐵)
fssdmd.d (𝜑𝐷 ⊆ dom 𝐹)
Assertion
Ref Expression
fssdmd (𝜑𝐷𝐴)

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2 (𝜑𝐷 ⊆ dom 𝐹)
2 fssdmd.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 6746 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrd 4035 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3962  dom cdm 5688  wf 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-cleq 2726  df-ss 3979  df-fn 6565  df-f 6566
This theorem is referenced by:  ordtypelem7  9561  vdwlem11  17024  gsumzoppg  19976  taylfvallem1  26412  taylply2  26423  taylply2OLD  26424  taylply  26425  dvtaylp  26426  dvntaylp0  26428  taylthlem1  26429  taylthlem2  26430  taylthlem2OLD  26431  tocyccntz  33146  omssubadd  34281
  Copyright terms: Public domain W3C validator