![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssdmd | Structured version Visualization version GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
Ref | Expression |
---|---|
fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6733 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrd 4020 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 dom cdm 5678 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-fn 6551 df-f 6552 |
This theorem is referenced by: ordtypelem7 9548 vdwlem11 16960 gsumzoppg 19899 taylfvallem1 26304 taylply2 26315 taylply2OLD 26316 taylply 26317 dvtaylp 26318 dvntaylp0 26320 taylthlem1 26321 taylthlem2 26322 taylthlem2OLD 26323 tocyccntz 32878 omssubadd 33920 |
Copyright terms: Public domain | W3C validator |