![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssdmd | Structured version Visualization version GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
Ref | Expression |
---|---|
fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6746 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrd 4035 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3962 dom cdm 5688 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 df-fn 6565 df-f 6566 |
This theorem is referenced by: ordtypelem7 9561 vdwlem11 17024 gsumzoppg 19976 taylfvallem1 26412 taylply2 26423 taylply2OLD 26424 taylply 26425 dvtaylp 26426 dvntaylp0 26428 taylthlem1 26429 taylthlem2 26430 taylthlem2OLD 26431 tocyccntz 33146 omssubadd 34281 |
Copyright terms: Public domain | W3C validator |