MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssdmd Structured version   Visualization version   GIF version

Theorem fssdmd 6619
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f (𝜑𝐹:𝐴𝐵)
fssdmd.d (𝜑𝐷 ⊆ dom 𝐹)
Assertion
Ref Expression
fssdmd (𝜑𝐷𝐴)

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2 (𝜑𝐷 ⊆ dom 𝐹)
2 fssdmd.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 6611 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrd 3961 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3887  dom cdm 5589  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-fn 6436  df-f 6437
This theorem is referenced by:  ordtypelem7  9283  vdwlem11  16692  gsumzoppg  19545  taylfvallem1  25516  taylply2  25527  taylply  25528  dvtaylp  25529  dvntaylp0  25531  taylthlem1  25532  taylthlem2  25533  tocyccntz  31411  omssubadd  32267
  Copyright terms: Public domain W3C validator