MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssdmd Structured version   Visualization version   GIF version

Theorem fssdmd 6617
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f (𝜑𝐹:𝐴𝐵)
fssdmd.d (𝜑𝐷 ⊆ dom 𝐹)
Assertion
Ref Expression
fssdmd (𝜑𝐷𝐴)

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2 (𝜑𝐷 ⊆ dom 𝐹)
2 fssdmd.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 6609 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrd 3966 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3892  dom cdm 5590  wf 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909  df-fn 6435  df-f 6436
This theorem is referenced by:  ordtypelem7  9261  vdwlem11  16690  gsumzoppg  19543  taylfvallem1  25514  taylply2  25525  taylply  25526  dvtaylp  25527  dvntaylp0  25529  taylthlem1  25530  taylthlem2  25531  tocyccntz  31407  omssubadd  32263
  Copyright terms: Public domain W3C validator