MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply2OLD Structured version   Visualization version   GIF version

Theorem taylply2OLD 26274
Description: Obsolete version of taylply2 26273 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylply2.1 (𝜑𝐷 ∈ (SubRing‘ℂfld))
taylply2.2 (𝜑𝐵𝐷)
taylply2.3 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
Assertion
Ref Expression
taylply2OLD (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐷,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylply2OLD
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . . 5 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . . . . 5 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylpfval 26270 . . . 4 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
8 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9 cnex 11090 . . . . . . . . . . . . 13 ℂ ∈ V
109a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
11 elpm2r 8772 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1210, 1, 2, 3, 11syl22anc 838 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
13 dvnbss 25828 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
141, 12, 4, 13syl3anc 1373 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
152, 14fssdmd 6670 . . . . . . . . 9 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
16 recnprss 25803 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
183, 17sstrd 3946 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1915, 18sstrd 3946 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2019, 5sseldd 3936 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
228, 21subcld 11475 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
23 df-idp 26092 . . . . . . . 8 Xp = ( I ↾ ℂ)
24 mptresid 6002 . . . . . . . 8 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
2523, 24eqtri 2752 . . . . . . 7 Xp = (𝑥 ∈ ℂ ↦ 𝑥)
2625a1i 11 . . . . . 6 (𝜑Xp = (𝑥 ∈ ℂ ↦ 𝑥))
27 fconstmpt 5681 . . . . . . 7 (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵)
2827a1i 11 . . . . . 6 (𝜑 → (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵))
2910, 8, 21, 26, 28offval2 7633 . . . . 5 (𝜑 → (Xpf − (ℂ × {𝐵})) = (𝑥 ∈ ℂ ↦ (𝑥𝐵)))
30 eqidd 2730 . . . . 5 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
31 oveq1 7356 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
3231oveq2d 7365 . . . . . 6 (𝑦 = (𝑥𝐵) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3332sumeq2sdv 15610 . . . . 5 (𝑦 = (𝑥𝐵) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3422, 29, 30, 33fmptco 7063 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
357, 34eqtr4d 2767 . . 3 (𝜑𝑇 = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))))
36 taylply2.1 . . . . . 6 (𝜑𝐷 ∈ (SubRing‘ℂfld))
37 cnfldbas 21265 . . . . . . 7 ℂ = (Base‘ℂfld)
3837subrgss 20457 . . . . . 6 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ⊆ ℂ)
3936, 38syl 17 . . . . 5 (𝜑𝐷 ⊆ ℂ)
40 taylply2.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
4139, 4, 40elplyd 26105 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷))
42 cnfld1 21300 . . . . . . . 8 1 = (1r‘ℂfld)
4342subrg1cl 20465 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐷)
4436, 43syl 17 . . . . . 6 (𝜑 → 1 ∈ 𝐷)
45 plyid 26112 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 1 ∈ 𝐷) → Xp ∈ (Poly‘𝐷))
4639, 44, 45syl2anc 584 . . . . 5 (𝜑Xp ∈ (Poly‘𝐷))
47 taylply2.2 . . . . . 6 (𝜑𝐵𝐷)
48 plyconst 26109 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 𝐵𝐷) → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
4939, 47, 48syl2anc 584 . . . . 5 (𝜑 → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
50 subrgsubg 20462 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ∈ (SubGrp‘ℂfld))
5136, 50syl 17 . . . . . 6 (𝜑𝐷 ∈ (SubGrp‘ℂfld))
52 cnfldadd 21267 . . . . . . . 8 + = (+g‘ℂfld)
5352subgcl 19015 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 + 𝑣) ∈ 𝐷)
54533expb 1120 . . . . . 6 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
5551, 54sylan 580 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
56 cnfldmul 21269 . . . . . . . 8 · = (.r‘ℂfld)
5756subrgmcl 20469 . . . . . . 7 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 · 𝑣) ∈ 𝐷)
58573expb 1120 . . . . . 6 ((𝐷 ∈ (SubRing‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
5936, 58sylan 580 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
60 ax-1cn 11067 . . . . . . 7 1 ∈ ℂ
61 cnfldneg 21302 . . . . . . 7 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
6260, 61ax-mp 5 . . . . . 6 ((invg‘ℂfld)‘1) = -1
63 eqid 2729 . . . . . . . 8 (invg‘ℂfld) = (invg‘ℂfld)
6463subginvcl 19014 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐷) → ((invg‘ℂfld)‘1) ∈ 𝐷)
6551, 44, 64syl2anc 584 . . . . . 6 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐷)
6662, 65eqeltrrid 2833 . . . . 5 (𝜑 → -1 ∈ 𝐷)
6746, 49, 55, 59, 66plysub 26122 . . . 4 (𝜑 → (Xpf − (ℂ × {𝐵})) ∈ (Poly‘𝐷))
6841, 67, 55, 59plyco 26144 . . 3 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵}))) ∈ (Poly‘𝐷))
6935, 68eqeltrd 2828 . 2 (𝜑𝑇 ∈ (Poly‘𝐷))
7035fveq2d 6826 . . . 4 (𝜑 → (deg‘𝑇) = (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵})))))
71 eqid 2729 . . . . 5 (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
72 eqid 2729 . . . . 5 (deg‘(Xpf − (ℂ × {𝐵}))) = (deg‘(Xpf − (ℂ × {𝐵})))
7371, 72, 41, 67dgrco 26179 . . . 4 (𝜑 → (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xpf − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))))
74 eqid 2729 . . . . . . . . 9 (Xpf − (ℂ × {𝐵})) = (Xpf − (ℂ × {𝐵}))
7574plyremlem 26210 . . . . . . . 8 (𝐵 ∈ ℂ → ((Xpf − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐵}))) = 1 ∧ ((Xpf − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7620, 75syl 17 . . . . . . 7 (𝜑 → ((Xpf − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐵}))) = 1 ∧ ((Xpf − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7776simp2d 1143 . . . . . 6 (𝜑 → (deg‘(Xpf − (ℂ × {𝐵}))) = 1)
7877oveq2d 7365 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1))
79 dgrcl 26136 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷) → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8041, 79syl 17 . . . . . . 7 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8180nn0cnd 12447 . . . . . 6 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℂ)
8281mulridd 11132 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8378, 82eqtrd 2764 . . . 4 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xpf − (ℂ × {𝐵})))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8470, 73, 833eqtrd 2768 . . 3 (𝜑 → (deg‘𝑇) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
851adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
8612adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
87 elfznn0 13523 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
8887adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
89 dvnf 25827 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
9085, 86, 88, 89syl3anc 1373 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
91 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
92 dvn2bss 25830 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9385, 86, 91, 92syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
945adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
9593, 94sseldd 3936 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9690, 95ffvelcdmd 7019 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
9788faccld 14191 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
9897nncnd 12144 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
9997nnne0d 12178 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
10096, 98, 99divcld 11900 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
10141, 4, 100, 30dgrle 26146 . . 3 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ≤ 𝑁)
10284, 101eqbrtrd 5114 . 2 (𝜑 → (deg‘𝑇) ≤ 𝑁)
10369, 102jca 511 1 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {csn 4577  {cpr 4579   class class class wbr 5092  cmpt 5173   I cid 5513   × cxp 5617  ccnv 5618  dom cdm 5619  cres 5621  cima 5622  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  pm cpm 8754  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  0cn0 12384  ...cfz 13410  cexp 13968  !cfa 14180  Σcsu 15593  invgcminusg 18813  SubGrpcsubg 18999  SubRingcsubrg 20454  fldccnfld 21261   D𝑛 cdvn 25763  Polycply 26087  Xpcidp 26088  degcdgr 26090   Tayl ctayl 26258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cnp 23113  df-haus 23200  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tsms 24012  df-xms 24206  df-ms 24207  df-0p 25569  df-limc 25765  df-dv 25766  df-dvn 25767  df-ply 26091  df-idp 26092  df-coe 26093  df-dgr 26094  df-tayl 26260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator